Skip to main content
Log in

Plasmon resonance absorption in sulfide-coated gold nanorods

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Gold nanorods 100 nm in diameter were grown within polycarbonate membranes as templates by the electrodeposition technique. A low-temperature sulfidation process was used to make gold sulfide nanoshells around the nanorods with a thickness of 7 nm. Optical absorption measurements were carried out on sulfide-coated gold nanorods obtained by dissolving the polycarbonate membrane. Several peaks were observed. These were analyzed on the basis of longitudinal and transverse modes of gold nanorods, the core-shell structure of gold-gold sulfide, and the presence of nanoparticles of gold. Theoretical analysis was carried out using a modified Mie scattering formalism. Satisfactory agreement between experimental results and theoretical fits were obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.M. Weissman, H.B. Sunkara, A.S. Tse and S.A. Asher: Thermally switchable periodicities and diffraction from mesoscopically ordered materials. Science 274, 959 (1996).

    Article  CAS  Google Scholar 

  2. R. Elghanian, J.J. Storhoff, R.C. Mucic, R.L. Letsinger and C.A. Mirkin: Selective colorimetric detection of polynucleotides based on the distance-dependent optical properties of gold nanoparticles. Science 277, 1078 (1997).

    Article  CAS  Google Scholar 

  3. C.A. Mirkin, R.L. Letsinger, R.C. Mucic and J.J. Storhoff: A DNA-based method for rationally assembling nanoparticles into macroscopic materials. Nature (London) 382, 607 (1996).

    Article  CAS  Google Scholar 

  4. C.L. Haynes and R.P. Van Duyne: Nanosphere lithography: A versatile nanofabrication tool for studies of size-dependent nanoparticle optic. J. Phys. Chem. B 105, 5599 (2001).

    Article  CAS  Google Scholar 

  5. E.F. Schubert, N.E.J. Hunt, M. Micovic, R.J. Malik, D.L. Sivco, A.Y. Cho and G.J. Zydzik: Highly efficient light-emitting diodes with microcavities. Science 265, 943 (1994).

    Article  CAS  Google Scholar 

  6. M.C. Wanke, O. Lehmann, K. Muller, Q. Wen and M. Stuke: Laser rapid prototyping of photonic band-gap microstructures Science 275, 1284 (1997).

    Article  CAS  Google Scholar 

  7. J.D. Joannopoulous, P.R. Villeneuve and S. Fan: Photonic crystals: Putting a new twist on light. Nature (London) 386, 143 (1997).

    Article  Google Scholar 

  8. F. Hache, D. Ricard and C. Flytzanis: Optical nonlinearities of small metal particles: Surface-mediated resonance and quantum-size effects. J. Opt. Soc. Am. B 3, 1647 (1986).

    Article  CAS  Google Scholar 

  9. D.S. Wang and M. Kerker: Enhanced Raman scattering by molecules adsorbed at the surface of colloidal spheroids. Phys. Rev. B 24, 1777 (1981).

    Article  CAS  Google Scholar 

  10. Z.S. Li, C.X. Kan and W.P. Cai: Tunable optical properties of nanostructured-gold/mesoporous-silica assembly. Appl. Phys. Lett. 82, 1392 (2003).

    Article  CAS  Google Scholar 

  11. G. Mie: Contribution to the optics of turbid media specifically colloidal metal particles. Ann. Phys. (Leipzig) 25, 377 (1908).

    Article  CAS  Google Scholar 

  12. C.G. Granqvist, N. Clander and O. Hunderi: Optical properties of ultrafine silver particles. Solid State Commun. 31, 249 (1979).

    Article  CAS  Google Scholar 

  13. C. Sonnichsen, T. Franzl, T. Wilk, Von G. Plessen, J. Feldmann, O. Wilson and P. Mulvaney: Drastic reduction of plasmon damping in gold nanorods phys. Rev. Lett. 88, 077402 (2002).

    Article  CAS  Google Scholar 

  14. A.E. Neeves and M.H. Birnboim: Composite structures for the enhancement of nonlinear optical materials. Opt. Lett. 134, 1087 (1988).

    Article  Google Scholar 

  15. J.W. Haus, H.S. Zhou, I. Honma and H. Komiyama: Enhanced optical properties of metal-coated nanoparticles. J. Appl. Phys. 73, 1043 (1993).

    Article  CAS  Google Scholar 

  16. K. Chatterjee, S. Banerjee and D. Chakravorty: Plasmon resonance shifts in oxide-coated silver nanoparticles. Phys. Rev. B66, 085421 (2002).

    Article  Google Scholar 

  17. S. Banerjee, S. Banerjee, A. Datta and D. Chakravorty: Nanocomposite gel-derived films by fractal growth of silver. Europhys. Lett. 46, 346 (1999).

    Article  CAS  Google Scholar 

  18. S. Bhattacharyya, S.K. Saha and D. Chakravorty: Silver nanowires grown in the pores of a silica gel. Appl. Phys. Lett. 77, 3770 (2000).

    Article  CAS  Google Scholar 

  19. A. Dan, B. Satpati, P.V. Satyam and D. Chakravorty: Diodelike behavior in glass-metal nanocomposites. J. Appl. Phys. 93, 4794 (2003).

    Article  CAS  Google Scholar 

  20. Handbook of Chemistry and Physics, edited by C.D. Hodgman (The Chemical Rubber Publishing Co., Cleveland, OH, 1962), p. 2672.

  21. R. Gans: Form of ultramicroscopic particles of silver. Ann. Physik. 47, 270 (1915).

    Article  CAS  Google Scholar 

  22. G.C. Papavassiliou: Optical properties of small inorganic and organic metal particles. Prog. Solid State Chem. 12, 185 (1980).

    Article  Google Scholar 

  23. P.B. Johnson and R.W. Christy: Optical constants of the noble metals. Phys. Rev. B 6, 4370 (1972).

    Article  CAS  Google Scholar 

  24. S. Link, M.B. Mohamed and M.A. El-Sayed: Simulation of the optical absorption spectra of gold nanorods as a function of their aspect ratio and the effect of the medium dielectric constant. J. Phys. Chem. B 103, 3073 (1999).

    Article  CAS  Google Scholar 

  25. H.S. Zhou, I. Honma, H. Komiyama and J.W. Hous: Controlled synthesis and quantum-size effect in gold-coated nanoparticles. Phys. Rev. B 50, 12052 (1994).

    Article  CAS  Google Scholar 

  26. U. Kreibig: Electronic properties of small silver particles: The optical constants and their temperature dependence. J. Phys. F: Met. Phys. 4, 999 (1974).

    Article  CAS  Google Scholar 

  27. C. Kittel: Introduction to Solid State Physics (Wiley, New York, London, 1961), p. 374.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Chakravorty.

Additional information

Address all correspondence to this author.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chatterjee, K., Basu, S. & Chakravorty, D. Plasmon resonance absorption in sulfide-coated gold nanorods. Journal of Materials Research 21, 34–40 (2006). https://doi.org/10.1557/JMR.2006.0032

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.2006.0032

Navigation