Skip to main content
Log in

Auto ignition synthesis and consolidation of Al2O3–ZrO2 nano/nano composite powders

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

An “Auto Ignition” technique was utilized in synthesizing Al2O3 –ZrO2 powders with nano/nano microstructure. The process used the corresponding nitrates as oxidizers and urea as the fuel. The as-synthesized powders were characterized by x-ray diffraction and transmission electron microscopy. It was observed that the microstructure consisted of crystallites of Al2O3 and ZrO2, both of which were nanocrystalline. As opposed to the other nanocomposite ceramics, this feature of the microstructure classifies the present powders as nano/nano type. This nanocrystallinity of the microstructure (crystallite size less than 100 nm) was maintained even after a soaking at 1200 °C for 2 h. Since the microstructure is stable at high temperatures, it was possible to densify the powders by hot isostatic pressing at 1200 °C. The product was 99% of the theoretical density and maintained nanocrystalline grain size. The average hardness and toughness values, as determined by an indentation technique, were 4.45 GPa and 8.38 MPa · m1/2, respectively. These values represent evidence of ductility in these composites since transformation toughening was ruled out in this case. The potential application of these results is expected to be in net shape deformation forming of ceramics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Gleiter, Nanostruct. Mater. 1, 1 (1992).

    Article  CAS  Google Scholar 

  2. J. Karch, R. Birringer, and H. Gleiter, Nature 330, 556 (1987).

    Article  CAS  Google Scholar 

  3. J. Karch and R. Birringer, Ceram. Int. 16, 291 (1990).

    Article  CAS  Google Scholar 

  4. M. J. Mayo, Mater. Design 14, 323 (1993).

    Article  CAS  Google Scholar 

  5. O. D. Sherby and J. Wadsworth, Prog. Mater. Sci. 33, 169 (1989).

    Article  CAS  Google Scholar 

  6. K. Niihara, J. Ceram. Soc. Jpn. 99, 510 (1991).

    Article  Google Scholar 

  7. A. Swaguchi, K. Toda, and K. Niihara, J. Ceram. Soc. Jpn. 99, 974 (1991).

    Article  Google Scholar 

  8. Science of Ceramics, edited by A. M. Alper and G. H. Stewart (Academic Press, London, U. K., 1967), Vol. 3, p. 339.

    Google Scholar 

  9. F. F. Lange and M. M. Hirlinger, J. Am. Ceram. Soc. 67, 164 (1984).

    Article  CAS  Google Scholar 

  10. B. Kibbel and A. H. Heuer, J. Am. Ceram. Soc. 69, 231 (1986).

    Article  CAS  Google Scholar 

  11. J. D. French, M. P. Harmer, H. M. Chan, and G. A. Miller, J. Am. Ceram. Soc. 71, 2508 (1990).

    Article  Google Scholar 

  12. J. Wang and R. Raj, J. Am. Ceram. Soc. 74, 1959 (1991).

    Article  CAS  Google Scholar 

  13. K. B. Alexander, P. F. Becher, S. B. Waters, and A. Bleier, J. Am. Ceram. Soc. 77, 939 (1994).

    Article  CAS  Google Scholar 

  14. M. Kagawa, Y. Imamura, S. Usui, and Y. Syona, J. Mater. Sci. Lett. 3, 96 (1984).

    Article  Google Scholar 

  15. S. C. H. Koh, K. K. Aik, and R. McPhearson, Advances in Ceramics, edited by S. Sōmiya, N. Yamamoto, and H. Yanagida (The American Ceramic Society, Inc., Westerville, OH), Vol. 24B.

  16. D. Vollath and D. V. Szabo, Nanostruct. Mater. 4, 927 (1994).

    Article  CAS  Google Scholar 

  17. E. A. Pugar and P. E. D. Morgan, J. Am. Ceram. Soc. 69, C-120 (1986).

    Article  Google Scholar 

  18. N. Claussen, G. Lindemann, and G. Petzow, Ceram. Int. 9, 83 (1983).

    Article  CAS  Google Scholar 

  19. J. McKittrick, G. Kalonji, and T. Ando, J. Non-Cryst. Solids 94, 163 (1987).

    Article  Google Scholar 

  20. V. Jayram, C. G. Levi, T. Whitney, and R. Mehrabian, Mater. Sci. Eng. A124, 65 (1990).

    Article  Google Scholar 

  21. M. L. Balmer, F. F. Lange, and C. G. Levi, J. Am. Ceram. Soc. 77, 2069 (1994).

    Article  CAS  Google Scholar 

  22. M. L. Balmer, F. F. Lange, V. Jayram, and C. G. Levi, J. Am. Ceram. Soc. 78, 1489 (1995).

    Article  CAS  Google Scholar 

  23. M. P. Pechini, U. S. Patent 3,330,697 (1963).

  24. L. R. Pederson, L. A. Chick, and G. J. Exarhos, U. S. Patent 5,114,702 (1992).

  25. J. J. Kingsley, K. Suresh, and K. C. Patil, J. Mater. Sci. 25, 1305 (1990).

    Article  CAS  Google Scholar 

  26. J. J. Kingsley and K. C. Patil, Mater. Lett. 6, 427 (1988).

    Article  CAS  Google Scholar 

  27. L. A. Chick, G. D. Maupin, and L. R. Pederson, Nanostruct. Mater. 4, 603 (1994).

    Article  CAS  Google Scholar 

  28. D. Huang, K. R. Venkatachari, and G. C. Stangle, J. Mater. Res. 10, 762 (1995).

    Article  CAS  Google Scholar 

  29. K. R. Venkatachari, D. Huang, S. P. Ostrander, W. A. Schulze, and G. C. Stangle, J. Mater. Res. 10, 748 (1995).

    Article  CAS  Google Scholar 

  30. W. H. Sutton, Bull. Am. Ceram. Soc. 68, 376 (1989).

    CAS  Google Scholar 

  31. J. Freim, J. McKittrick, J. Katz, and K. Sickafus, Nanostruct. Mater. 4, 371 (1994).

    Article  CAS  Google Scholar 

  32. J. McKittrick, B. Tunaboylu, and J. Katz, J. Mater. Sci. 29, 2119 (1994).

    Article  Google Scholar 

  33. H. Hahn and R. S. Averback, Nanostruct. Mater. 1, 95 (1992).

    Article  CAS  Google Scholar 

  34. D. M. Owen and A. H. Chokshi, Nanostruct. Mater. 2, 181 (1993).

    Article  CAS  Google Scholar 

  35. R. S. Averback, H. J. Hoefler, H. Hahn, and J. C. Logas, Nano-struct. Mater. 1, 173 (1992).

    Article  CAS  Google Scholar 

  36. S. Inamura, M. Miyamoto, Y. Maida, M. Takagura, K. Hirota, and O. Yamaguchi, J. Mater. Sci. 29, 4913 (1994).

    Article  CAS  Google Scholar 

  37. M. R. Gallas, B. Hockey, A. Pechenik, and G. J. Piermarini, J. Am. Ceram. Soc. 77, 2107 (1994).

    Article  CAS  Google Scholar 

  38. A. Pechenik and G. J. Piermarini, and S. C. Danforth, J. Am. Ceram. Soc. 75, 3283 (1992).

    Article  CAS  Google Scholar 

  39. M. D. Matthews and A. Pechenik, J. Am. Ceram. Soc. 74, 1547 (1991).

    Article  CAS  Google Scholar 

  40. C. D. Terwilliger and Y-M. Chiang, Nanostruct. Mater. 77, 37 (1993).

    Article  Google Scholar 

  41. R. S. Mishra, A. K. Mukherjee, and K. Shoda, J. Mater. Res. 11, 1144 (1996).

    Article  CAS  Google Scholar 

  42. H. Hirai and K-I. Kondo, J. Am. Ceram. Soc. 77, 487 (1994).

    Article  CAS  Google Scholar 

  43. K. Kondo and S. Sawai, J. Am. Ceram. Soc. 71, C-185 (1988).

    Google Scholar 

  44. C. D. Terwilliger and Y-M. Chiang, Acta Met et Mater. 43, 319 (1995).

    Article  CAS  Google Scholar 

  45. C. D. Terwilliger and Y-M. Chiang, Nanostruct. Mater. 4, 651 (1994).

    Article  CAS  Google Scholar 

  46. Y. Sakka and I. A. Aksay, Nanostruct. Mater. 4, 169 (1994).

    Article  CAS  Google Scholar 

  47. R. J. Condor, C. B. Ponton, and P. M. Marquis, Nanostruct. Mater. 2, 333 (1993).

    Article  Google Scholar 

  48. S. R. Jain, K. C. Adiga, and V. R. PaiVernekar, Combust. Flame 40, 71 (1981).

    Article  CAS  Google Scholar 

  49. A. G. Evans and E. A. Charles, J. Am. Ceram. Soc. 59, 371 (1976).

    Article  CAS  Google Scholar 

  50. K. Niihara, R. Morena, and D. P. H. Hasselman, J. Mater. Sci. Lett. 1, 13 (1982).

    Article  CAS  Google Scholar 

  51. K. Kamata, T. Mochizuki, S. Matsumoto, A. Yamada, and K. Miyokawa, J. Am. Ceram. Soc. 69, C-193 (1985).

    Google Scholar 

  52. T. C. Chou and T. G. Nieh, J. Am. Ceram. Soc. 74, 2270 (1991).

    Article  CAS  Google Scholar 

  53. T. C. Chou and T. G. Nieh, Thin Solid Films 221, 89 (1992).

    Article  CAS  Google Scholar 

  54. C. M. Jantzen, R. P. Krepski, and H. Herman, Mater. Res. Bull. 15, 1313 (1980).

    Article  CAS  Google Scholar 

  55. C. G. Levi, V. Jayram, J. J. Valencia, and R. Mehrabian, J. Mater. Res. 3, 969 (1988).

    Article  CAS  Google Scholar 

  56. S. Bhaduri, E. Zhou, and S. B. Bhaduri, Nanostruct. Mater. 7, 487 (1996).

    Article  CAS  Google Scholar 

  57. E. C. Subbarao, in Advances in Ceramics, edited by A. H. Heuer and L. W. Hobbs (The American Ceramic Society, Westerville, OH, 1981), p. 1.

    Google Scholar 

  58. R. C. Garvie and M. V. Swain, J. Mater. Sci. 20, 1193 (1985).

    Article  CAS  Google Scholar 

  59. F. F. Lange, J. Mater. Sci. 17, 247 (1982).

    Article  CAS  Google Scholar 

  60. D. J. Green, J. Am. Ceram. Soc. 65, 610 (1982).

    Article  CAS  Google Scholar 

  61. R. Chaim, Nanostruct. Mater. 1, 479 (1992).

    Article  CAS  Google Scholar 

  62. H. J. Hoefler and R. S. Averback, Scripta Metall. 24, 2401 (1990).

    Article  CAS  Google Scholar 

  63. B. A. Cottom and M. J. Mayo, Scripta Metall. Mater. 34, 809 (1996).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bhaduri, S., Bhaduri, S.B. & Zhou, E. Auto ignition synthesis and consolidation of Al2O3–ZrO2 nano/nano composite powders. Journal of Materials Research 13, 156–165 (1998). https://doi.org/10.1557/JMR.1998.0021

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.1998.0021

Navigation