Skip to main content
Log in

The effect of Ru on Ti50Pd50 high temperature shape memory alloy: a first-principles study

  • Articles
  • Published:
MRS Advances Aims and scope Submit manuscript

Abstract

The stability of the Ti50Pd50-xRux alloy was investigated using first-principles density functional theory within the plane-wave pseudopotential method. Firstly, the Ti50Pd50 gave equilibrium lattice parameter and lowest heats of formation in better agreement with experimental data to within 3%. The heat of formation decreases with an increase in Ru concentration, consistent with the trend of the density of states which is lowered at the Fermi level as Ru content is increased which suggests stability. It was also found that from the calculated elastic constants the structures showed positive shear modulus above 20 at. % Ru, condition of stability. Furthermore, the addition of Ru was found to strengthen the Ti50Pd50-xRux system at higher concentrations. The thermal coefficients of linear expansion for the Ti50Pd31.25Ru18.75 are higher at low temperature, and that the TiPd-Ru system tends to expand more at low content of 18.75 at. % Ru than at higher content. Partial substitution of Pd with Ru was found more effective as a strengthening element and may enhance the martensitic transformation temperature of the Ti50Pd50 alloy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. M. Jani, M. Leary, A. Subi, and M. A. Gibson, Mater. Des. 56, p. 1078 (2014).

    Article  Google Scholar 

  2. K. N. Melton, K. Otsuka, and C. M. Wayman, Cambridge University Press, pp. 220–239 (1998).

  3. Y. Yamabe-Mitarai et al, Proc. of Materials Today 2, pp. 517–552 (2015).

    Article  Google Scholar 

  4. R. Mahlangu, M. J. Phasha, H. R. Chauke, and P. E. Ngoepe, Intermetallics 33, pp. 27–32 (2013).

    Article  CAS  Google Scholar 

  5. H. C. Donkersloot and J. H. N. Van Vucht, JLCM 20, pp. 83–91 (1970).

    CAS  Google Scholar 

  6. M. P. Mashamaite, H. R. Chauke and P. E. Ngoepe, IOP Conf. Sr. Mater. Sci. Eng. 430, p. 012019 (2018).

    Article  Google Scholar 

  7. H. Chauke, M. Mashamaite, R. Modiba, and P. Ngoepe, Key Eng. Mater. 770, pp. 230–238 (2018).

    Article  Google Scholar 

  8. C. Guo, M. Li, C. Li, and Z. Du, CALPHAD 23, pp. 512–517 (2011).

    Article  Google Scholar 

  9. X. Huang, M. Karin, and J. Ackland, Phys. Rev. B67, pp. 24101–24107 (2003).

    Article  Google Scholar 

  10. D. Golberg, Y. Xu, Y. Murakami, S. Morito and K. Otsuka, Intermetallics 3, pp. 35–46 (1995).

    Article  CAS  Google Scholar 

  11. R. Arockiakumar, M. Takahashi, S. Takahashi, and Y. Yamabe-Mitarai, Mater. Sci. Eng. A 585, pp. 86–93 (2013).

    Article  CAS  Google Scholar 

  12. K. Otsuka, K. Oda, Y. Ueno, M. Piao, T. Ueki, and H. Horikawa, Scripta Metall Mater. 29, pp. 1355–1358 (1993).

    Article  CAS  Google Scholar 

  13. G. Bozzolo, H. O. Mosca, and R. D. Noebe, Intermetallics 15, pp. 901–911 (2007).

    Article  CAS  Google Scholar 

  14. P. K. Kumar, D. C. Lagoudas, J. Zanca, and M. Z. Lagouda, Proc. of SPIE 12, p. 6170 (2006).

    Google Scholar 

  15. C. R Hamond, The elements. Boca Raton, FL: CRC (2005).

    Google Scholar 

  16. M. Jahn’atek, O. Levy, G. L. W. Hart, L. J. Nelson, R. V. Chepulskii, J. Xue, and S. Curtarolo, Phys. Rev. B84, pp. 214110–214118 (2011).

    Article  Google Scholar 

  17. G. Kresse and J. Hafner, Phys. Rev. B47, pp. 58–561 (1993).

    Google Scholar 

  18. G. Kresse and J. Furthmüller, Phys. Rev. B54, pp. 11169–11186 (1996).

    Article  Google Scholar 

  19. J. P. Perdew and K. Burke and M. Ernzerhof, Phys. Rev. Lett. 77, pp. 3865–3868 (1996).

    Article  CAS  Google Scholar 

  20. W. Kohn and L. J. Sham, Phys. Rev. 140, pp. 1133–1138 (1965).

    Article  Google Scholar 

  21. H. J. Monkhorst and J. D. Pack, Phys. Rev. B13, pp. 5188–1592 (1996).

    Google Scholar 

  22. K. Parlinski, Z. Q. Li and Y. Kawazoe, Phys. Rev. Lett. 78, pp. 4063–4066 (1997).

    Article  CAS  Google Scholar 

  23. X. Q. Chen, C. L. Fu, and J. R. Morris, Intermetallic 18, pp. 998–1006 (2010).

    Article  CAS  Google Scholar 

  24. W. Xing, and X. Q. Chen, Intermetallics 28, pp. 16–24 (2012).

    Article  CAS  Google Scholar 

  25. Yu. N. Gornostyrev, O. Yu. Kontsevoi, A. F. Maksyutov, A. J. Freeman, M. I. Katsnelson, A. V. Trefilov, and A. I. Lichtenshtein, Phys. Rev. B70, p 014102 (2004).

    Article  Google Scholar 

  26. D. A. Pankhurst, D. Nguyen-Manh, and D. G. Pettifor, Phys. Rev. B69, p. 075113 (2004).

    Article  Google Scholar 

  27. M. J. Mehl and B. M. Klein, Intermetallic Compd. 1, pp. 1–26 (1994).

    Google Scholar 

  28. N. L. Lethole, H. R. Chauke, and P. E. Ngoepe, Comput. Theor. Chem. 1155, pp. 67–74 (2019).

    Article  CAS  Google Scholar 

  29. K. Gschneidner et al, Nat. Mater. 2, pp. 587–591 (2003).

    Article  CAS  Google Scholar 

  30. D. G. Pettifor, Mater. Sci. Technol. 8, pp. 345–349 (1992).

    Article  CAS  Google Scholar 

  31. S. Pugh, Philos. Mag. 45, pp. 823–843 (1954).

    Article  CAS  Google Scholar 

  32. I. N. Frantsevich and S. A. Voronov, Naukova Dumka, Kiev, pp. 60–180 (1983).

  33. G. Murtaza et al, J. Alloys Compd. 597, pp. 36–44 (2014).

    Article  CAS  Google Scholar 

  34. H. Li, Y. Chen, H. Wang, H. Wang, Y. Li, I. Harran, Y. Li and C. Guo, J. Alloys Compd. 700, pp. 208–214 (2017).

    Article  CAS  Google Scholar 

  35. J. Yang, J. Huang, Z. Ye, D. Fan, S. Chen, and Y. Zhao, Ceram. Int., 43, pp. 7751–7761 (2017).

    Article  CAS  Google Scholar 

  36. O. L. Anderson, J. Phys. Chem. solids 24, pp. 909–917 (1963).

    Article  CAS  Google Scholar 

  37. R. Przeliorz and J. Piatkowski, METALURGIJA 54, pp. 543–546 (2015).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Diale, R.G., Modiba, R., Ngoepe, P.E. et al. The effect of Ru on Ti50Pd50 high temperature shape memory alloy: a first-principles study. MRS Advances 4, 2419–2429 (2019). https://doi.org/10.1557/adv.2019.331

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/adv.2019.331

Navigation