Skip to main content
Log in

Nanoparticle Embedded Nanofiber Synthesis and Evaluation of Usability on Biomedical Applications

  • Published:
MRS Advances Aims and scope Submit manuscript

Abstract

When nanoparticles and nanofibers combined at the nanoscale, they could create new features in the material and therefore new areas of use. In this study, polyvinylpyrrolidone (PVP) nanofibers containing carbon nanoparticles produced by dense medium plasma technology have been fabricated via electrospinning technique for the first time, a new class of nanocomposite mat material has been prepared and evaluated for medical devices. A dense medium plasma technique is used for nanoparticles synthesis, which is novel, cost-efficient, and fast technology when is compared with other common nanoparticles synthesis techniques. Carbon based nanoparticles are synthesized from an arc sustained in benzene (purity, 99.5%) between iron electrodes by the lab-made dense medium plasma system. The study first mentions the production of nanoparticles by a pressure of 8 bar argon gas for glow discharge in a period of 9 seconds using a 0.5 cm electrode distance in a liquid environment (volume of benzene: 30 ml). Then, separated carbon nanoparticles are integrated with the PVP nanofibers produced by the electrospinning method. Processing parameters of PVP nanofibers containing carbon nanoparticle (nanocomposites) are optimized with various conditions such as polymer concentration: 7.8-8.0 %w/v, ratio of nanoparticle to polymer solution: 1-3.9 mg /ml, distance of electrode: 10-25 cm, processing time: 5-30 min. All samples are characterized by contact angle measurements, scanning electron microscopy and transmission electron microscopy. At the same time, electrical conductivity of nanocomposite mats are tested for foreseeing usage in biomedical application. Results showed that carbon nanoparticles have diameters in 25 ± 5.4 nm. New nanocomposite material production is proven by transmission electron microscopy. It is a super hydrophilic mat material (static contact angle is lower than 10°). According to the optimization of processing parameters, the diameters of nanocomposite fibers reach down to 150 ±75 nm., Nanocomposite mat resistance is found to be dramatically higher than that for the bare PVP nanofiber mat resistance. According to these results, usage in biomedical application of new material was discussed. It has a great potential to use as biocompatible, light, insulator new material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Vasita and D.S. Katti, International Journal of Nanomedicine 1, 15–30 (2006).

    Article  CAS  Google Scholar 

  2. Z. M Huang, Y. Z. Zhang, M. Kotaki, and S. Ramakrishna, Composites Science and Technology 63,2223–2253 (2003).

    Article  CAS  Google Scholar 

  3. W. J. Li, C. T. Laurencin, E. J. Caterson, R. S. Tuan, and F. K. Ko, Journal of Biomedical Materials Research, P. A. 60, 613–621 (2002).

    Article  CAS  Google Scholar 

  4. S. Li, M. M. Lin, M. S. Toprak, D. K. Kim and M. Muhammed, Nano Reviews 1, 5214–5232 (2010).

    Article  Google Scholar 

  5. W. K. Son, J. H. Youk, W. H. Park, Carbohydrate Polymers, 430–434 (2006).

    Google Scholar 

  6. V. Subramanian, E. E. Wolf, and P. V. Kamat, Journal of the American Chemical Society 126, 4943–4950 (2004).

    Article  CAS  Google Scholar 

  7. S. Agarwal, J. H. Wendorff and A. Greiner, Polymer 49, 5603–5621 (2008)

    Article  CAS  Google Scholar 

  8. W. E. Teo, R. İnai and S. Ramaksihna, Science and Technology of Advanced Materials 12, 1–19 (2011).

    Article  Google Scholar 

  9. N. A. M. Barakat, M.F. Abadir, F. A. Sheikh, M. A. Kanjwal, S. J. Park, H. Y. Kim, Chemical Engineering Journal, 156, 487–495 (2010).

    Article  CAS  Google Scholar 

  10. Y. Ma, S. Manolache, F. Denes, D, D.H. Thamm, I.D. Kurzman, D.M. Vail, J. Biomater. Sci. Polymer Edn, 15 (8), 1033–1049 (2004).

    Article  CAS  Google Scholar 

  11. M. Afzali, A. Mostafavi, and T. Shamspur, Materials Science and Engineering, C 68, 789–797. (2016).

    Article  CAS  Google Scholar 

  12. Y. Liu, H. Huang, L. Wang, D. Cai, B. Liu, D. Wang, Q. Li, and T. Wang, Sensors and Actuators B: Chemical 223, 730–737. (2016).

    Article  CAS  Google Scholar 

  13. A.E. Deniz, H.A. Vural, B. Ortaç, and T. Uyar, Materials Letters 65, 2941–2943. (2011).

    Article  CAS  Google Scholar 

  14. J. Quirós, J.P. Borges, K. Boltes, I. Rodea-Palomares, and R. Rosal, Journal of Hazardous Materials 299, 298–305 (2015).

    Article  Google Scholar 

  15. T. Tański, W. Matysiak, Ł. Krzemiński, P. Jarka, and K. Gołombek, Applied Surface Science 424, 184–189 (2017).

    Article  Google Scholar 

  16. K. Nasouri, A.M Shoushtari, and M.R.M. Mojtahedi, Polymer Composites 38, 2026–2034 (2017).

    Article  CAS  Google Scholar 

  17. F. Barzegar, A. Bello, M. Fabiane, S. Khamlich, D. Momodu, F. Taghizadeh, J. Dangbegnon, and N. Manyala, Journal of Physics and Chemistry of Solids 77, 139–145 (2015).

    Article  CAS  Google Scholar 

  18. F. Müller, C.A. Ferreira, D. S. Azambuja, C. Aleman, E. Armelin, Journal of Physical Chemistry 118, 1102–1112 (2014).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Serdaroğlu, D.Ç., Korkusuz, H.K., Karakaya, M. et al. Nanoparticle Embedded Nanofiber Synthesis and Evaluation of Usability on Biomedical Applications. MRS Advances 3, 233–240 (2018). https://doi.org/10.1557/adv.2018.200

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/adv.2018.200

Navigation