Skip to main content
Log in

Evolution of microstructure in advanced ferritic-martensitic steels under irradiation: the origin of low temperature radiation embrittlement

  • Articles
  • Published:
MRS Advances Aims and scope Submit manuscript

Abstract

Advanced reduced activation ferritic/martensitic steels and oxide dispersion-strengthened steels exhibit significant radiation embrittlement under low temperature neutron irradiation. In this study we focused on atom probe tomography (APT) of Eurofer97 and ODS Eurofer steels irradiated with neutrons and heavy ions at low temperatures. Previous TEM studies revealed dislocation loops in the neutron-irradiated f\m steels. At the same time, our APT showed early stages of solid solution decomposition. High density (1024 m–3) of ∼3–5 nm clusters enriched in chromium, manganese, and silicon atoms were found in Eurofer 97 irradiated in BOR-60 reactor to 32 dpa at 332°C. In this steel irradiated with Fe ions up to the dose of 24 dpa, pair correlation functions calculated using APT data showed the presence of Cr-enriched pre-phases.

APT study of ODS Eurofer found a significant change in the nanocluster composition after neutron irradiation to 32 dpa at 330 °C and an increase in cluster number density. APT of ODS steels irradiated with Fe ions at low temperatures revealed similar changes in nanoclusters.

These results suggest that irradiation-induced nucleation and evolution of very small precipitates may be the origin of low temperature radiation embrittlement of f\m steels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Lindau, A. Möslang, M. Rieth, M. Klimiankou, E. Materna Morris, A. Alamo, F. Tavassoli, C. Cayron, M. Lancha, P. Fernandez, N. Baluc, R. Schaublin, E. Diegele, G. Filacchioni, J.W. Rensman, B.V.D. Schaaf , E. Lucon, and W. Dietz, Fusion Eng. Des. 75–79, 989–996 (2005).

    Article  Google Scholar 

  2. R. Lindau, A. Möslang, M. Schirra, P. Schlossmacher, M. Klimenkov, J. Nucl. Mater. 307–311, 769 (2002).

    Article  Google Scholar 

  3. Ch.Ch. Eiselt, M. Klimenkov, R. Lindau, A. Möslang, H.R.Z. Sandim, A.F. Padilha, D. Raabe, J. Nucl. Mater. 385, 231 (2009).

    Article  CAS  Google Scholar 

  4. M. Klimiankou, R. Lindau, A. Möslang, J. Nucl. Mater. 329–333, 347–351 (2004).

    Article  Google Scholar 

  5. A.A. Aleev, N.A. Iskandarov, M. Klimenkov, R. Lindau, A. Möslang, A.A. Nikitin, S.V. Rogozhkin, P. Vladimirov, and A.G. Zaluzhnyi, J. Nucl. Mater. 409, 65–71 (2011).

    Article  CAS  Google Scholar 

  6. A.-A.F. Tavassoli, A. Alamo, L. Bedel, L. Forest, J.-M. Gentzbittel, J.-W. Rensman, E. Diegele, R. Lindau, M. Schirra, R. Schmitt, H.C. Schneider, C. Petersen, A.-M. Lancha, P. Fernandez, G. Filacchioni, M.F. Maday, K. Mergia, N. Boukos, Baluc, P. Spatig, E. Alves , E. Lucon, J. Nucl. Mater. 329–333, 257–262 (2004).

    Article  Google Scholar 

  7. B. van der Schaaf, F. Tavassoli, C. Fazio, E. Rigal, E. Diegele, R. Lindau, G. LeMarois, Fusion Eng. Des. 69, 197–203 (2003).

    Article  Google Scholar 

  8. C. Petersen, A. Povstyanko, V. Prokhorov, A. Fedoseev, O. Makarov, and B. Dafferner, J. Nucl. Mater. 367370, 544–549 (2007).

    Article  Google Scholar 

  9. J. Henry, X. Averty, and A. Alamo, J. Nucl. Mater. 417, 99–103 (2011).

    Article  CAS  Google Scholar 

  10. S.V. Rogozhkin, A.A. Aleev, A.G. Zaluzhnyi, A.A. Nikitin, N.A. Iskandarov, P. Vladimirov, R. Lindau, and A. Möslang, J. Nucl. Mater. 409, 94–99 (2011).

    Article  CAS  Google Scholar 

  11. S.V. Rogozhkin, A.A. Nikitin, A.A. Aleev, A.B. Germanov, A.G. Zaluzhnyi, Inorg. Mater. Appl. Res. 4 (2), 112–118 (2013).

    Article  Google Scholar 

  12. R. Coppola, R. Lindau, R.P. May, A. Möslang, and M. Valli, J. Nucl. Mater. 386–388, 195– 198 (2009).

    Article  Google Scholar 

  13. E. Materna Morris, A. Möslang, R. Rolli, and H.C. Schneider, J. Nucl. Mater. 386–388, 422– 425 (2009).

    Article  Google Scholar 

  14. E. Materna Morris, A. Möslang, R. Rolli, and H.C. Schneider, Fus. Eng. Des. 86, 2607–2610 (2011).

    Article  CAS  Google Scholar 

  15. M. Klimenkov, E. Materna Morris, and A. Möslang, J. Nucl. Mater. 417, 124–126 (2011).

    Article  CAS  Google Scholar 

  16. O.J. Weiß, E. Gaganidze and J. Aktaa, Quantative, Adv. Sci. Technol. (Faenza, Italy) 73, 118–123 (2010).

    Article  Google Scholar 

  17. E. Gaganidze, C.Petersen, E. Materna Morris, C. Dethloff, O.J. Weiß, J. Aktaa, A. Povstyanko, A. Fedoseev, O. Makarov, and V. Prokhorov, J. Nucl. Mater. 417, 93–98 (2011).

    Article  CAS  Google Scholar 

  18. N. V. Luzginova, J. Rensman, P. Pierick, and J. B. J. Hegeman, J. Nucl. Mater. 428, 192–196 (2012).

    Article  CAS  Google Scholar 

  19. D. A. McClintock, M. A. Sokolov, D. T. Hoelzer, and R. K. Nanstad, J. Nucl. Mater. 392, 353–359 (2009).

    Article  CAS  Google Scholar 

  20. E. Lucon, A. Leenaers, and W. Vandermeulen, Fusion Eng. Des. 82, 2438–2443 (2007).

    Article  CAS  Google Scholar 

  21. C. Dethloff , E. Gaganidze, J. Aktaa, J. Nucl. Mater. 454, 323–331 (2014).

    Article  CAS  Google Scholar 

  22. S. V. Rogozhkin, N. N. Orlov, b, A. A. Aleev, A. G. Zaluzhnyi, M. A. Kozodaev, R. P. Kuibida, T. V. Kulevoi, A. A. Nikitin, B. B. Chalykh, R. Lindau, A. Möslang, and P. Vladimirov, Phys. Met. Metallogr. 116 (1), 72–78 (2015).

    Article  Google Scholar 

  23. S. Rogozhkin, A. Bogachev, O. Korchuganova, A. Nikitin, N. Orlov, A. Aleev, A. Zaluzhnyi, M.Kozodaev, T. Kulevoy, B. Chalykh, R. Lindau, A. Möslang, P. Vladimirov, M. Klimenkov, M. Heilmaier, J. Wagner, S. Seils, J. Nucl. Mater. Energy (2016) doi:10.1016/j.nme.2016.06.011

  24. S. V. Rogozhkin, A. A. Aleev, A. G. Zaluzhnyi, R. P. Kuibeda, T. V. Kulevoy, A. A. Nikitin, N. N. Orlov, B. B. Chalyh, V.B. Shishmarev, Phys. Met. Metallogr. 113 (2), 200–211 (2012).

    Article  Google Scholar 

  25. G. Kropachev, R. Kuibeda, A. Kozlov, B. Chalyh, A.D. Fertman, T. Kulevoy, A. Nikitin, A. Aleev, S. Rogozhkin, Rev. Sci. Instrum. 81 (1), 02B906 (2010).

    Google Scholar 

  26. M.K. Miller, Atom Probe Tomography: Analysis at the Atomic Level, New York: Kluwer, (2000).

    Book  Google Scholar 

  27. M. Klimenkov, R. Lindau, A. Möslang, J. Nucl. Mater. 386–388, 553–556 (2009).

    Article  Google Scholar 

  28. G.E. Lucas, J. Nucl. Mater. 206, 287–305 (1993).

    Article  CAS  Google Scholar 

  29. F. Danoix and P. Auger, Mater. Charact. 44,177–201 (2000).

    Article  CAS  Google Scholar 

  30. S. V. Rogozhkin, O. A. Korchuganova, A. A. Aleev, Inorg. Mater. Appl. Res. 7 (2), 210–213 (2016).

    Article  Google Scholar 

  31. D. Brimbal, L. Beck, O. Troeber, E. Gaganidze, P. Trocellier, J. Aktaa, R. Lindau, J. Nucl. Mater. 465, 236–244 (2015).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rogozhkin, S., Nikitin, A., Orlov, N. et al. Evolution of microstructure in advanced ferritic-martensitic steels under irradiation: the origin of low temperature radiation embrittlement. MRS Advances 2, 1143–1155 (2017). https://doi.org/10.1557/adv.2016.657

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/adv.2016.657

Navigation