Skip to main content
Log in

Corrections to the Optical Transition Energies in Single-Wall Carbon Nanotubes of Smaller Diameters

  • Published:
MRS Online Proceedings Library Aims and scope

Abstract

Optical spectroscopy characterization of carbon nanotube samples requires accurate determination of their band structure and exciton binding energies. In this paper, we present a non-orthogonal density-functional based tight-binding calculation for the electronic transition energies in single-wall carbon nanotubes. We show that the curvature-induced rehybridization of the electronic orbitals, long-range atomic interactions, and geometrical structure relaxation all have a significant impact on the electronic transition energies in the small diameter limit. After including quasiparticle corrections and exciton binding energies, the calculated electronic transition energies show good agreement with the experimental transition energies observed by photoluminescence and resonance Raman spectroscopy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Kataura, Y. Kumazawa, Y. Maniwa, I. Umezu, S. Suzuki, Y. Ohtsuka, and Y. Achiba, Synthetic Metals 103, 2555 (1999).

    Article  CAS  Google Scholar 

  2. R. Saito, G. Dresselhaus, and M. S. Dresselhaus, Physical Properties of Carbon Nanotubes, Imperial College Press, London, 1998.

    Book  Google Scholar 

  3. R. B. Weisman and S. M. Bachilo, Nano Letters 3, 1235 (2003).

    Article  CAS  Google Scholar 

  4. C. Fantini, A. Jorio, M. Souza, A. J. Mai Jr., M. S. Strano, M. S. Dresselhaus, and M. A. Pimenta, Phys. Rev. Lett. 93, 147406 (2004).

    Article  CAS  Google Scholar 

  5. D. Porezag, T. Frauenheim, T. Köhler, G. Seifert, and R. Kaschner, Phys. Rev. B 51, 12947 (1995).

    Article  CAS  Google Scholar 

  6. D. A. Papaconstantopoulos, M. J. Mehl, S. C. Erwin, and M. R. Pederson, in Tight-Binding Approach to Computational Materials Science, edited by P. E. A. Turchi, A. Gonis, and L. Colombo (Mater. Res. Soc. Proc. 491, Warrendale, PA, 1998) pp. 221–230.

  7. V. N. Popov, New Journal of Physics 6, 17 (2004).

    Article  Google Scholar 

  8. Ge. G. Samsonidze, R. Saito, N. Kobayashi, A. Grüneis, J. Jiang, A. Jorio, S. G. Chou, G. Dresselhaus, and M. S. Dresselhaus, Appl. Phys. Lett., in press.

  9. A. Jorio, C. Fantini, M. A. Pimenta, R. B. Capaz, Ge. G. Samsonidze, G. Dresselhaus, M. S. Dresselhaus, R. Saito, J. Jiang, N. Kobayashi, A. Grüneis, and R. Saito, Phys. Rev. B, submitted.

  10. R. Saito, G. Dresselhaus, and M. S. Dresselhaus, Phys. Rev. B 61, 2981 (2000).

    Article  CAS  Google Scholar 

  11. T. Ando, Journal of Physical Society of Japan 66, 1066 (1997).

    Article  CAS  Google Scholar 

  12. C. L. Kane and E. J. Mele, Phys. Rev. Lett. 90, 207401 (2003).

    Article  CAS  Google Scholar 

  13. C. L. Kane and E. J. Mele, in Electric Properties of Synthetic Nanostructures, edited by H. Kuzmany, J. Fink, M. Mehring, and S. Roth (Amer. Inst. of Phys. 723, Woodbury, NY, 2004) pp. 402–406.

  14. T. G. Pedersen, Phys. Rev. B 67, 073401 (2003).

    Article  Google Scholar 

  15. V. Perebeinos, J. Tersoff, and P. Avouris, Phys. Rev. Lett. 92, 257402 (2004).

    Article  Google Scholar 

  16. C. D. Spataru, S. Ismail-Beigi, L. X. Benedict, and S. G. Louie, Phys. Rev. Lett. 92, 077402 (2004).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Samsonidze, G.G., Saito, R., Jiang, J. et al. Corrections to the Optical Transition Energies in Single-Wall Carbon Nanotubes of Smaller Diameters. MRS Online Proceedings Library 858, 271–276 (2004). https://doi.org/10.1557/PROC-858-HH7.2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/PROC-858-HH7.2

Navigation