Skip to main content
Log in

Characterization of Minority-Carrier Hole Transport in Nitride-Based Light-Emitting Diodes with Optical and Electrical Time-Resolved Techniques

  • Published:
MRS Online Proceedings Library Aims and scope

Abstract

Forward-to-reverse bias step-recovery measurements were performed on In.07Ga.93N/GaN and Al.36Ga.64N/Al.46Ga.54N quantum-well (QW) light-emitting diodes grown on sapphire. With the QW sampling the minority-carrier hole density at a single position, distinctive two-phase optical decay curves were observed. Using diffusion equation solutions to self-consistently model both the electrical and optical responses, hole transport parameters τp = 758 ± 44 ns, Lp = 588 ± 45 nm, and µp = 0.18 ± 0.02 cm2/Vs were obtained for GaN. The mobility was thermally activated with an activation energy of 52 meV, suggesting trap-modulated transport. Optical measurements of sub-bandgap peaks exhibited slow responses approaching the bulk lifetime. For Al.46Ga.54N, a longer lifetime of τp = 3.0 µs was observed, and the diffusion length was shorter, Lp ≈ 280 nm. Mobility was an order of magnitude smaller than in GaN, µp ≈ 10−2 cm2/Vs, and was insensitive to temperature, suggesting hole transport through a network of defects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. M. van Hove, R. Hickman, J. J. Klaassen, P. P. Chow, and P. P. Ruden, Appl. Phys. Lett. 70, 2282 (1997).

    Article  Google Scholar 

  2. J. C. Carrano, T. Li, D. L. Brown, P. A. Grudowski, C. J. Eiting, R. D. Dupuis, and J. C. Campbell, Appl. Phys. Lett. 73, 2405 (1998).

    Article  CAS  Google Scholar 

  3. S. F. Chichibu, T. Azuhata, T. Sota, T. Mukai, and S. Nakamura, J. Appl. Phys. 88, 5153 (2000).

    Article  CAS  Google Scholar 

  4. W. Shan, X. C. Xie, J. J. Song, and B. Goldenberg, Appl. Phys. Lett. 67, 2512 (1995).

    Article  CAS  Google Scholar 

  5. L. Chernyak, A. Osinsky, H. Temkin, J. W. Yang, Q. Chen, and M. A. Khan, Appl. Phys. Lett. 69, 2531 (1996)

    Article  CAS  Google Scholar 

  6. Z. Z. Bandic, P. M. Bridger, E. C. Piquette, and T. C. McGill, Solid State Electron. 44, 221 (2000).

    Article  CAS  Google Scholar 

  7. R. H. Dean and C. J. Nuese, IEEE Trans. Electron Devices ED-18, 151 (1971).

    Article  Google Scholar 

  8. R. H. Kingston, Proc. IRE 42, 829 (1954).

    Article  Google Scholar 

  9. R. J. Kaplar, S. R. Kurtz, D. D. Koleske, and A. J. Fischer, J. Appl. Phys. 95, 4905 (2004).

    Article  CAS  Google Scholar 

  10. R. J. Kaplar, S. R. Kurtz, and D. D. Koleske, Appl. Phys. Lett. 85, 5436 (2004).

    Article  CAS  Google Scholar 

  11. A. J. Fischer, A. A. Allerman, M. H. Crawford, K. H. A. Bogart, S. R. Lee, R. J. Kaplar, W. W. Chow, S. R. Kurtz, K. W. Fullmer, and J. J. Figiel, Appl. Phys. Lett. 84, 3394 (2004).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank T. M. Bauer and K. W. Fullmer for helpful technical assistance as well as C. H. Seager for thoughtful discussions. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kaplar, R.J., Kurtz, S.R., Koleske, D.D. et al. Characterization of Minority-Carrier Hole Transport in Nitride-Based Light-Emitting Diodes with Optical and Electrical Time-Resolved Techniques. MRS Online Proceedings Library 831, 108–113 (2004). https://doi.org/10.1557/PROC-831-E10.9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/PROC-831-E10.9

Navigation