Skip to main content
Log in

Perturbed Amelogenin Protein Self-assembly Alters Nanosphere Properties Resulting in Defective Enamel Formation

  • Published:
MRS Online Proceedings Library Aims and scope

Abstract

Dental enamel is a unique composite bioceramic material that is the hardest tissue in the vertebrate body, containing long-, thin-crystallites of substituted hydroxyapatite. Enamel functions under immense loads in a bacterial-laden environment, and generally without catastrophic failure over a lifetime for the organism. Unlike all other biogenerated hard tissues of mesodermal origin, such as bone and dentin, enamel is produced by ectoderm-derived cells called ameloblasts. Recent investigations on the formation of enamel using cell and molecular approaches have been coupled to biomechanical investigations at the nanoscale and mesoscale levels. For amelogenin, the principle protein of forming enamel, two domains have been identified that are required for the proper assembly of multimeric units of amelogenin to form nanospheres. One domain is at the amino-terminus and the other domain in the carboxyl-terminal region. Amelogenin nanospheres are believed to influence the hydroxyapatite crystal habit. Both the yeast two-hybrid assay and surface plasmon resonance have been used to examine the assembly properties of engineered amelogenin proteins. Amelogenin protein was engineered using recombinant DNA techniques to contain deletions to either of the two self-assembly domains. Amelogenin protein was also engineered to contain single amino-acid mutations/substitutions in the amino-terminal self-assembly domain; and these amino-acid changes are based upon point mutations observed in humans affected with a hereditary disturbance of enamel formation. All of these alterations reveal significant defects in amelogenin self-assembly into nanospheres in vitro. Transgenic animals containing these same amelogenin deletions illustrate the importance of a physiologically correct bio-fabrication of the enamel protein extracellular matrix to allow for the organization of the enamel prismatic structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. F. Mosher, J. Sottile, C. Wu, and J. A. McDonald, Curr. Opin. Cell Bio. 4, 810 (1992).

    Article  CAS  Google Scholar 

  2. Y. Yamada and H. K. Kleinman, Curr. Opin. Cell Biol. 4, 819 (1992).

    Article  CAS  Google Scholar 

  3. J. H. Miner, Curr. Opin. Nephrol. Hypertens. 7, 13 (1998).

    Article  CAS  Google Scholar 

  4. J. P. Simmer and A. G. Fincham, Crit. Rev. Oral Biol. Med. 6, 84 (1995).

    Article  CAS  Google Scholar 

  5. M. L. Paine, D. H. Zhu, W. Luo, P. J. Bringas, M. Goldberg, S. N. White, Y. P. Lei, M. Sarikaya, H. K. Fong, and M. L. Snead, J. Struct. Biol. 132, 191 (2000).

    Article  CAS  Google Scholar 

  6. G. Greenberg, P. J. Bringas, and H. C. Slavkin, Differentiation 25, 32 (1983).

    Article  CAS  Google Scholar 

  7. M. L. Snead, M. Zeichner-David, T. Chandra, K. J. Robson, S. L. Woo, and H. C. Slavkin, Proc. Natl. Acad. Sci. USA 80, 7254 (1983).

    Article  CAS  Google Scholar 

  8. C. Gibson, E. Golub, W. Abrams, G. Shen, W. Ding, and J. Rosenbloom, Biochem. 31, 8384 (1992).

    Article  CAS  Google Scholar 

  9. C.-C. Hu, M. Fukae, T. Uchida, Q. Qian, C. H. Zhang, O. H. Ryu, T. Tanabe, Y. Yamakoshi, C. Murakami, N. Dohi, M. Shimizu, and J. P. Simmer, J. Dent. Res. 76, 1720 (1997).

    Article  CAS  Google Scholar 

  10. P. H. Krebsbach, S. K. Lee, Y. Matsuki, C. Kozac, K. M. Yamada, and Y. Yamada, J. Biol. Chem. 271, 4431 (1996).

    Article  CAS  Google Scholar 

  11. C. D. Fong, I. Slaby, and L. Hammarstrom, J. Bone Min. Res. 11, 892 (1996).

    Article  CAS  Google Scholar 

  12. R. Cerny, I. Slaby, L. Hammarstrom, and T. Wurtz, J. Bone Min. Res. 11, 883 (1996).

    Article  CAS  Google Scholar 

  13. C.-C. Hu, M. Fukae, T. Uchida, Q. Qian, C. H. Zhang, O. H. Ryu, T. Tanabe, Y. Yamakoshi, C. Murakami, N. Dohi, M. Shimizu, and P. J. Simmer, J. Dent. Res. 76, 648 (1997).

    Article  CAS  Google Scholar 

  14. O. Ryu, J. C. Hu, Y. Yamakoshi, J. L. Villemain, X. Cao, C. Zhang, J. D. Bartlett, and J. P. Simmer, Eur. J. Oral Sci. 110, 358 (2002).

    Article  CAS  Google Scholar 

  15. P. S. Nelson, L. Gan, C. Ferguson, P. Moss, R. Gelinas, L. Hood, and K. Wang, Proc. Natl. Acad. Sci. U S A 96, 3114 (1999).

    Article  CAS  Google Scholar 

  16. J. D. Bartlett, O. H. Ryu, J. Xue, J. P. Simmer, and H. C. Margolis, Connect. Tissue Res. 39, 405 (1998).

    Article  CAS  Google Scholar 

  17. J. D. Bartlett and J. P. Simmer, Crit. Rev. Oral Biol. Med. 10, 425 (1999).

    Article  CAS  Google Scholar 

  18. M. Langerstrom, N. Dahl, Y. Nakahori, Y. Nakagome, B. Backman, U. Landegren, and U. Pettersson, Genomics 10, 971 (1991).

    Article  Google Scholar 

  19. M. J. Aldred, P. J. M. Crawford, E. Roberts, and N. S. Thomas, Hum. Genet. 90, 413 (1992).

    Article  CAS  Google Scholar 

  20. M. Lagerstrom-Fermer and U. Landegren, Conn. Tissue Res. 32, 241 (1995).

    Article  CAS  Google Scholar 

  21. C. W. Gibson, Z. A. Yuan, B. Hall, G. Longenecker, E. Chen, T. Thyagarajan, T. Sreenath, J. T. Wright, S. Decker, R. Piddington, G. Harrison, and A. B. Kulkarni, J. Biol. Chem. 276, 31871 (2001).

    Article  CAS  Google Scholar 

  22. P. S. Hart, T. C. Hart, C. W. Gibson, and J. T. Wright, Arch. Oral Biol. 45, 79 (2000).

    Article  CAS  Google Scholar 

  23. J. T. Wright, P. S. Hart, M. J. Aldred, K. Seow, P. J. Crawford, S. P. Hong, C. W. Gibson, and T. C. Hart, Connect. Tissue Res. 44 (Suppl. 1), 72 (2003).

    Article  CAS  Google Scholar 

  24. P. S. Hart, T. C. Hart, J. P. Simmer, and J. T. Wright, Arch. Oral Biol. 47, 255 (2002).

    Article  CAS  Google Scholar 

  25. P. S. Hart, M. J. Aldred, P. J. Crawford, N. J. Wright, T. C. Hart, and J. T. Wright, Arch. Oral Biol. 47, 261 (2002).

    Article  CAS  Google Scholar 

  26. M. L. Snead, Connect. Tissue Res. 44 (Suppl 1), 52 (2003).

    Article  CAS  Google Scholar 

  27. M. L. Snead, E. C. Lau, M. Zeichner-David, A. G. Fincham, S. L. Woo, and H. C. Slavkin, Biochem. Biophys. Res. Commun. 129, 812 (1985).

    Article  CAS  Google Scholar 

  28. A. G. Fincham, J. Moradian-Oldak, T. G. H. Diekwisch, D. M. Lyaruu, J. T. Wright, P. Bringas Jr., and H. C. Slavkin, J. Struct. Biol. 115, 50 (1995).

    Article  CAS  Google Scholar 

  29. N. J. Lench and G. B. Winter, Hum. Mutat. 5, 252 (1995).

    Article  Google Scholar 

  30. P. M. Collier, J. J. Sauk, J. Rosenbloom, Z. A. Yuan, and C. W. Gibson, Archs Oral Biol. 42, 235 (1997).

    Article  CAS  Google Scholar 

  31. J. Moradian-Oldak, M. L. Paine, Y. P. Lei, A. G. Fincham, and M. L. Snead, J. Struct. Biol. 131, 27 (2000).

    Article  CAS  Google Scholar 

  32. M. L. Paine, Y. P. Lei, K. Dickerson, and M. L. Snead, J. Biol. Chem. 277, 17112 (2002).

    Article  CAS  Google Scholar 

  33. Y. Doi, E. D. Eanes, H. Shimokawa, and J. D. Termine, J. Dent. Res. 63, 98 (1984).

    Article  CAS  Google Scholar 

  34. T. Aoba, E. C. Moreno, M. Kresak, and T. Tanabe, J. Dent. Res. 68, 1331 (1989).

    Article  CAS  Google Scholar 

  35. A. G. Fincham, J. Moradian-Oldak, J. P. Simmer, P. E. Sarte, E. C. Lau, T. G. H. Diekwisch, and H. C. Slavkin, J. Struct. Biol. 112, 103 (1994).

    Article  CAS  Google Scholar 

  36. J. Moradian-Oldak, P. J. Simmer, E. C. Lau, P. E. Sarte, H. C. Slavkin, and A. G. Fincham, Biopolymers 34, 1339 (1994).

    Article  CAS  Google Scholar 

  37. C. Robinson, P. Fuchs, and J. A. Weatherell, J. Crystal Growth 53, 160 (1981).

    Article  CAS  Google Scholar 

  38. A. G. Fincham and J. Moradian-Oldak, Connect. Tiss. Res. 32, 119 (1995).

    Article  CAS  Google Scholar 

  39. M. L. Paine and M. L. Snead, J. Bone Min. Res. 12, 221 (1997).

    Article  CAS  Google Scholar 

  40. S. Fields and O. Song, Nature 340, 245 (1989).

    Article  CAS  Google Scholar 

  41. V. H. Nielsen, C. Bendixen, J. Arnbjerg, C. M. Sorensen, H. E. Jensen, N. M. Shukri, and B. Thomsen, Mamm. Genome 11, 1087 (2000).

    Article  CAS  Google Scholar 

  42. J. Kirkham, J. Zhang, S. J. Brookes, R. C. Shore, S. R. Wood, D. A. Smith, M. L. Wallwork, O. H. Ryu, and C. Robinson, J. Dent. Res. 79, 1943 (2000).

    Article  CAS  Google Scholar 

  43. H. B. Wen, A. G. Fincham, and J. Moradian-Oldak, Matrix Biol. 20, 387 (2001).

    Article  CAS  Google Scholar 

  44. S. N. White, M. L. Paine, M. Sarikaya, H. Fong, Z. Yu, Z. C. Li, and M. L. Snead, J. Am. Ceram. Soc. 83, 238 (2000).

    Article  CAS  Google Scholar 

  45. D. B. Ravassipour, P. S. Hart, A. V. Ritter, M. Yamauchi, C. Gibson, and J. T. Wright, J. Dent. Res. 79, 1476 (2000).

    Article  CAS  Google Scholar 

  46. M. L. Snead, M. L. Paine, L. S. Chen, B. Yoshida, W. Luo, D.-H. Zhu, Y.-P. Lei, Y.-H. Liu, and R. E. J. Maxson, Connect. Tissue Res. 35, 41 (1996).

    Article  CAS  Google Scholar 

  47. M. L. Snead, M. L. Paine, W. Luo, D.-H. Zhu, B. Yoshida, Y.-P. Lei, L. S. Chen, C. T. Paine, J. M. Burstein, S. Jitpukdeebudintra, S. N. White, and P. J. Bringas, Connect. Tissue Res. 38, 279 (1998).

    Article  CAS  Google Scholar 

  48. Y. L. Zhou and M. L. Snead, J. Biol. Chem. 275, 12273 (2000).

    Article  CAS  Google Scholar 

  49. C. Dunglas, D. Septier, M. L. Paine, D. H. Zhu, M. L. Snead, and M. Goldberg, Calcif. Tissue Int. 71, 155 (2002).

    Article  CAS  Google Scholar 

  50. H. Fong, D. Heidel, M. Sarikaya, S. N. White, M. L. Paine, W. Luo, and M. L. Snead, J. Bone Miner. Res. 18, 2052 (2003).

    Article  CAS  Google Scholar 

  51. M. L. Paine, W. Luo, D. H. Zhu, P. J. Bringas, and M. L. Snead, J. Bone Miner. Res. 18, 466 (2003).

    Article  CAS  Google Scholar 

  52. M. L. Paine, H. J. Wang, W. Luo, P. H. Krebsbach, and M. L. Snead, J. Biol. Chem. 278, 19447 (2003).

    Article  CAS  Google Scholar 

  53. M. L. Paine, D. H. Zhu, W. Luo, and M. L. Snead, Cells, Tissues Organs 176, 7 (2004).

    Article  CAS  Google Scholar 

  54. J. Moradian-Oldak, N. Bouropoulos, L. Wang, and N. Gharakhanian, Matrix Biol. 21, 197 (2002).

    Article  CAS  Google Scholar 

  55. M. Sarikaya, Proc. Natl. Acad. Sci. USA 96, 13611 (1999).

    Article  Google Scholar 

  56. M. Sarikaya, C. Tamerler, A. K. Jen, K. Schulten, and F. Baneyx, Nat. Mater. 2 (9), 577 (2003).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to all of our colleagues over past years, but in particular we would like to thank Dr. Janet Moradian-Oldak for her involvement in these studies. This work is supported by grants DE13045 and DE13404 from the NIH, the National Institute of Dental and Craniofacial Research.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Paine, M.L., Lei, Y., Luo, W. et al. Perturbed Amelogenin Protein Self-assembly Alters Nanosphere Properties Resulting in Defective Enamel Formation. MRS Online Proceedings Library 823, W6.2 (2004). https://doi.org/10.1557/PROC-823-W6.2

Download citation

  • Published:

  • DOI: https://doi.org/10.1557/PROC-823-W6.2

Navigation