Skip to main content
Log in

Cooling Power Density of SiGe/Si Superlattice Micro Refrigerators

  • Published:
MRS Online Proceedings Library Aims and scope

Abstract

Experiments were carried out to determine the cooling power density of SiGe/Si superlattice microcoolers by integrating thin film metal resistor heaters on the cooling surface. By evaluating the maximum cooling of the device under different heat load conditions, the cooling power density was directly measured. Both micro thermocouple probes and the resistance of thin film heaters were used to get an accurate measurement of temperature on top of the device. Superlattice structures were used to enhance the device performance by reducing the thermal conductivity, and by providing selective emission of hot carriers through thermionic emission. Various device sizes were characterized. The maximum cooling and the cooling power density had different dependences on the micro refrigerator size. Net cooling over 4.1 K below ambient and cooling power density of 598 W/cm2 for 40 × 40 μm2 devices were measured at room temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. R. Venkatasubramanian, E. Siivola, T. Colpitts, and B. O'Quinn, Nature 413, 597–602 (2001).

    CAS  Google Scholar 

  2. H. J. Goldsmit, Thermoelectric Refrigeration (Plenum, New York, 1964).

    Book  Google Scholar 

  3. J. B. Vining, J. Appl. Phys. 69, 331–341 (1991).

    Article  CAS  Google Scholar 

  4. A. Shakouri and J. E. Bowers, Appl. Phys. Lett., 71, 1234 (1997).

    Article  CAS  Google Scholar 

  5. A. Shakouri, C. LaBounty, P. Abraham, J. Piprek, and J. E. Bowers, Mater. Res. Soc. Symp. Proc. 545, 449 (1999).

    Article  CAS  Google Scholar 

  6. A. Shakouri and J. E. Bowers, in The 16th International Conference on Thermoelectrics, Dresden, Germany, 26-29 Aug. 1997, p. 636–40.

    Google Scholar 

  7. A. Shakonri, C. LaBounty, P. Abraham, J. Piprekt, J. E. Bowers, in The Next Generation Materials for Small-Scale Refrigeration and Power Generation Applications Symposium, Boston, MA, USA 30 Nov.-3 Dec. 1998, p. 449–58.

    Google Scholar 

  8. G. D. Mahan and L. M. Woods, Physical Review Letters 80, 4016–19 (1998).

    Article  CAS  Google Scholar 

  9. C. B. Vining and G. D. Mahan, Journal of Applied Physics 86, 6852–3 (1999).

    Article  CAS  Google Scholar 

  10. L. D. Hicks and M. S. Dresselhaus, Physical Review B (Condensed Matter) 47, 12727–31 (1993).

    Article  CAS  Google Scholar 

  11. L. D. Hicks, T. C. Harman, and M. S. Dresselhaus, Applied Physics Letters 63, 3230–2 (1993).

    Article  CAS  Google Scholar 

  12. T. Koga, X. Sun, S. B. Cronin, and M. S. Dresselhaus, Applied Physics Letters 73, 2950–2 (1998).

    Article  CAS  Google Scholar 

  13. T. Koga, X. Sun, S. B. Cronin, and M. S. Dresselhaus, Applied Physics Letters 75, 2438–40 (1999).

    Article  CAS  Google Scholar 

  14. T. Koga, S. B. Cronin, M. S. Dresselhaus, J. L. Liu, and K. L. Wang, Applied Physics Letters 77, 1490–2 (2000).

    Article  CAS  Google Scholar 

  15. F. Xiaofeng, Z. Gehong, C. LaBounty, J. E. Bowers, E. Croke, C. C. Ahn, S. Huxtable, A. Majumdar, and A. Shakouri, Applied Physics Letters 78, 1580–2 (2001).

    Article  Google Scholar 

  16. F. Xiaofeng, Z. Gehong, E. Croke, G. Robinson, C. LaBounty, A. Shakouri, J. E. Bowers, in The 7th Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems, Las Vegas, NV, USA 23-26 May 2000, p. 304–7.

    Google Scholar 

  17. Z. Gehong, A. Shakouri, C. L. Bounty, G. Robinson, E. Croke, P. Abraham, F. Xiafeng, H. Reese, and J. E. Bowers, Electronics Letters 35, 2146–7 (1999).

    Article  Google Scholar 

  18. H. J. Osten, Journal of Applied Physics 84, 2716–21 (1998).

    Article  CAS  Google Scholar 

  19. B. L. Stein, E. T. Yu, E. T. Croke, A. T. Hunter, T. Laursen, A. E. Bair, J. W. Mayer, and C. C. Ahn, in The 24th Conference on the Physics and Chemistry of Semiconductor Interfaces Research, Triangle Park, NC, USA 12-15 Jan. 1997, p. 1108–11.

    Google Scholar 

  20. C. LaBounty, A. Shakouri, G. Robinson, P. Abraham, and J. E. Bowers, in The 18th International Conference on Thermoelectrics, Baltimore, MD, USA 29 Aug.-2 Sept. 1999, p. 23–6.

    Google Scholar 

  21. C. LaBounty, A. Shakouri, and J. E. Bowers, Journal of Applied Physics 89, 4059–64 (2001).

    Article  CAS  Google Scholar 

  22. J. Christofferson, D. Vashaee, A. Shakouri, P. Melese, F. Xiaofeng, Z. Gehong, C. Labounty, J. E. Bowers, and E. T. Croke, III, in The 17th Annual IEEE Semiconductor Thermal Measurement and Management Symposium, San Jose, CA, USA 20-22 March 2001, p. 58–62.

    Google Scholar 

  23. L. Coldren and S. Corzine, Diode Lasers and Photonic Integrated Circuits (John Wiley & Sons, Inc., New York, 1995).

    Google Scholar 

  24. C. LaBounty, Ph. D. Thesis, University of California, Santa Barbara, 2001.

  25. D. Vashaee, A. Shakouri, C. Labounty, G. Zeng, X. Fan, J. E. Bowers, and E. T. Croke, III, manuscript in preparation.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zeng, G., Fan, X., LaBounty, C. et al. Cooling Power Density of SiGe/Si Superlattice Micro Refrigerators. MRS Online Proceedings Library 793, 124–130 (2003). https://doi.org/10.1557/PROC-793-S2.2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/PROC-793-S2.2

Navigation