Skip to main content
Log in

Thermally activated phenomena observed by atomic force microscopy

  • Published:
MRS Online Proceedings Library Aims and scope

Abstract

Thermal effects may affect the velocity dependence of friction on the nanoscale in different ways. In a dry environment the stick-slip motion of a nanotip sliding across a crystalline surface is modified by thermal vibrations, which leads to a logarithmic increase of friction with the sliding velocity at very low speeds (v < 10 μm/s). At higher speeds the role of thermal activation is negligible, and friction becomes velocity-independent. An analytical expression, which explains both regimes of friction vs. velocity, is introduced. In a humid environment the situation is complicated by water capillaries formed between tip and surface, which act as obstacles for thermally activated jumps. Depending on the wettability of the surface, different tendencies in the velocity dependence are observed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C.M. Mate, G.M. McClelland, R. Erlandsson, and S. Chaing. Phys, Rev. Lett. 56, 1942 (1987)

    Article  Google Scholar 

  2. B. N. J. Persson, Sliding Friction: Physical Principles and Applications (Springer Verlag, Berlin 2000)

    Book  Google Scholar 

  3. T. Bouhacina, J.P. Aimé, S. Gauthier, D. Michel, and V. Heroguez, Phys. Rev. B 56, 7694 (1997)

    Article  CAS  Google Scholar 

  4. E. Gnecco, R. Bennewitz, T. Gyalog, Ch. Loppacher, M. Bammerlin, E. Meyer, H.-J. Güntherodt, Phys. Rev. Lett. 84, 1772 (2000)

    Article  Google Scholar 

  5. E. Rabinowicz, Friction and wear of materials (Wiley-Interscience, 1995)

    Google Scholar 

  6. E. Riedo, F. Lévy, H. Brune, Phys. Rev. Lett. 88, 185505 (2002)

    Article  Google Scholar 

  7. E. Gnecco, R. Bennewitz, E. Meyer, J. Phys.: Condens. Matter 13, R619 (2001)

    CAS  Google Scholar 

  8. Y. Sang, M. Dubé, M. Grant, Phys. Rev. Lett. 87, 174301 (2001) 174301

    Article  CAS  Google Scholar 

  9. E. Riedo, E. Gnecco, R. Bennewitz, E. Meyer, and H. Brune, Phys. Rev. Lett. 91, 084502 (2003)

    Article  CAS  Google Scholar 

  10. J. Israelachvili, Intermolecular and Surface Forces (Academic Press San Diego, 1991)

    Google Scholar 

  11. L. Bocquet, E. Charlaix, S. Ciliberto, and J. Crassous, Nature 396 (1998) 735

    Article  CAS  Google Scholar 

  12. M. He, A.S. Blum, G. Overney, and R.M. Overney, Phys. Rev. Lett. 88, 154302 (2002)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the Swiss NSF, the CTI, and the NCCR Nanoscale Science.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Enrico Gnecco.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gnecco, E., Riedo, E., Bennewitz, R. et al. Thermally activated phenomena observed by atomic force microscopy. MRS Online Proceedings Library 790, 13 (2003). https://doi.org/10.1557/PROC-790-P1.3

Download citation

  • Published:

  • DOI: https://doi.org/10.1557/PROC-790-P1.3

Navigation