Skip to main content
Log in

Growth of Scandium Magnesium Oxide on GaN

  • Published:
MRS Online Proceedings Library Aims and scope

Abstract

Sc2O3 and MgO have been previously shown to be promising gate dielectrics for III-nitride devices. However, even though the films are initially epitaxial, they possess large numbers of defects due to the large mismatch with GaN. Thus further improvements in interface electrical characteristics will require a reduction in the interfacial mismatch between the oxides and the GaN. This paper discusses the feasibility of reducing the Sc2O3 lattice constant via the introduction of Mg and in particular investigates the relationship between growth parameters and microstructure for the resulting ScMgO alloy. Increasing the magnesium cell temperature was found to increase the growth rate but have little effect on surface roughness. Higher Mg cell temperatures also produced evidence in x-ray diffraction (XRD) of a second phase of MgScO which has the rock salt crystal structure and contains ∼2%Sc. Increasing the substrate temperature from 100°C to 300°C was found to have little effect on the growth rate and dramatically increased surface roughness. However higher substrate temperature combined with a lower Mg cell temperature produced a more uniform oxygen profile as determined by depth profiling Auger Electron Spectroscopy (AES). From AES and XRD, the solid solubility limit for ScxMg1−xO with the Bixbyite structure was reached at about XMg =0.28

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. Ren, M. Hong, S.N.G. Chu, M.A. Marcus, M.J. Schurman, A. Baca, S.J. Pearton, C.R.Abernathy, Appl. Phys. Lett. 1998; 73: 3893–3895.

  2. M. Asif Khan, X. Hu, A. Tarakji, G. Simin, J. Yang, R. Gaska, M.S. Shur, Appl. Phys. Lett. 77, 1339– 1341(2001).

  3. G. Simin, X. Hu, N. Ilinsakaya, J. Zhang, A. Tarakji, A. Kumar, J. Yang, M. Asif Khan, R. Gaska, M.S. Shur, IEEE Electron Dev. Lett. 22, 53–55 (2001).

  4. B.P. Gaffey, L.J. Guido, X.W. Wang, T.P. Ma, IEEE Trans. Electron Dev. ED48, 458–463 (2001).

  5. S.C. Binari, K. Doverspike, G. Kelner, H.B. Dietrich, A.E. Wickenden, Solid-State Electron. 41, 177–182 (1997).

  6. S. Arulkumaran, T. Egawa, H. Ishikawa, T. Jimbo, M. Umeno, Appl. Phys. Lett. 73, 809 (1998).

    Article  CAS  Google Scholar 

  7. Y. Irokawa, Y. Nakano, Solid-State Electron. 46, 1559–1564 (2001).

  8. T.S. Lay, M. Hong, J. Kwo, J.P. Mannaerts, W.H. Hung, D.J. Huang, Solid-State Electron. 45, 1679–1683 (2001).

  9. T. Hashizume, E. Alekseev, D. Pavlidis, K.S. Boutros, J. Redwing, J. Appl. Phys. 88, 1983–1987 (2000).

  10. N.Q. Zhang, S. Keller, G. Parish, S. Heikman, S.P. DenBaars, U.K. Mishra, IEEE Electron Device Lett. 21, 421–423 (2001).

  11. R. Therrien, G. Lucovsky, R.F. Davis, Phys. Stat. Solidi. A176, 2000(1999).

  12. J.W. Johnson, B.P. Gila, B. Lou, K.P. Lee, C.R. Abernathy, S.J. Pearton, J.I. Chyi, T.E. Nee, C.M. Lee, C.C. Chou, F. Ren, J. Electrochem. Soc. G303–306 (2001).

  13. J.W. Johnson, B. Lou, F. Ren, B.P. Gila, V. Krishnamoorthy, C.R. Abernathy, S.J. Pearton, J.I. Chyi, T.E. Nee, C.M. Lee, C.C. Chou, Appl. Phys. Lett. 77, 3230–3232 (2000).

  14. S.J. Pearton, C.R. Abernathy, B.P. Gila, A.H. Onstine, M.E. Overberg, G.T. Thaler, J. Kim, B. Lou, R. Mehandru, F. Ren, Y.D. Park, Opto-Electron. Rev. 10(4), 231–236 (2002).

  15. J. Kim, R. Mehandru, B. Luo, F. Ren, B.P. Gila, A.H. Onstine, C.R. Abernathy, S.J. Pearton, Y. Irokawa, Appl. Phys. Lett. 80 (24), 4555–4557 (2002).

  16. J. Kim, B.P. Gila, R. Mehandru, J.W. Johnson, J.H. Shin, K.P. Lee, B. Luo, A.H. Onstine, C.R. Abernathy, S.J. Pearton, F. Ren, J. Ectrochem. Soc. 149 (8) G482–G484 (2002).

  17. J. Kim, R. Mehandru, B. Luo, F. Ren, B.P. Gila, A.H. Onstine, C.R. Abernathy, S.J. Pearton, Y. Irokawa, Appl. Phys. Lett. 81(2), 373–375 (2002).

  18. B. Luo, R. Mehandru, J. Kim, F. Ren, B.P. Gila, A.H. Onstine, C.R. Abernathy, S.J. Pearton, R. Birkhahn, B. Peres, R.C. Fitch, N. Moser, J.K. Gillespie, G.H. Jessen, T.J. Jenkins, M.J. Yannuzi, G.D. Via, A. Crespo, Sol. Stat. Elect. 47, 1781–1786 (2003).

  19. R. Mehandru, B.P. Gila, J. Kim, J.W. Johnson, K.P. Lee, B. Luo, A.H. Onstine, C.R. Abernathy, S.J. Pearton, F. Ren, Electrochem. Sol.-Stat. Lett. 5 (7) G51–G53 (2002).

  20. R. Mehandru, B. Luo, J. Kim, F. Ren, B.P. Gila, A.H. Onstine, C.R. Abernathy, S.J. Pearton, D. Gotthold, R. Birkhahn, B. Peres, R. Fitch, J. Gillespie, T. Jenkins, J. Sewell, D. Via, A. Crespo, Appl. Phys. Lett. 82(15) 2530–2532 (2003).

  21. B.P. Gila, J.W. Johnson, R. Mehandru, B. Luo, A.H. Onstine, K.K. Allums, V. Krishnamoorthy, S. Bates, C. R. Abernathy, F. Ren, S.J. Pearton, Phys. Stat. Sol. (a) 188 (1), 239–242 (2001).

  22. A. H. Onstine, B. P. Gila, J. Kim, D. Stodilka, K. Allums, C. R. Abernathy, F. Ren, S. J. Pearton submitted for publication in Sol. Stat. Elect. 2003.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Onstine, A.H., Herrero, A., Gila, B.P. et al. Growth of Scandium Magnesium Oxide on GaN. MRS Online Proceedings Library 786, 86 (2003). https://doi.org/10.1557/PROC-786-E8.6

Download citation

  • Published:

  • DOI: https://doi.org/10.1557/PROC-786-E8.6

Navigation