Skip to main content
Log in

U- and Hf-Bearing Pyrochlore and Zirconolite and their Leached Layers Formed in Acidic Solution: Tem Investigation

  • Published:
MRS Online Proceedings Library Aims and scope

Abstract

Transmission electron microscopy results from a sintered ceramics with stoichiometry of Ca(U0.5Ce0.25Hf0.25)Ti2O7 show the material contains both pyrochlore and zirconolite phases and structural intergrowth of zirconolite lamellae within pyrochlore. (001) plane of zirconolite is parallel to (111) plane of pyrochlore because of their structural similarities. The pyrochlore is relatively rich in U, Ce, and Ca with respect to the coexisting zirconolite. Average compositions for the coexisting pyrochlore and zirconolite at 1350 °C are Ca1.01(Ce3+ 0.13Ce4+ 0.19U0.52Hf0.18)(Ti1.95Hf0.05)O7 (with U/(U+Hf) = 0.72) and (Ca0.91Ce0.09)(Ce3+ 0.08U0.26Hf0.66Ti0.01)Ti2.00O7 (with U/(U+Hf) = 0.28) respectively. A single pyrochlore (Ca(U,Hf)Ti2O7) phase may be synthesized at 1350 °C if the ratio of U/(U+Hf) is greater than 0.72, and a single zirconolite (Ca(Hf,U)Ti2O7) phase may be synthesized at 1350 °C if the ratio of U/(U+Hf) is less than 0.28. An amorphous leached layer that is rich in Ti and Hf forms on the surface after the ceramics has been leached in pH 4 buffered solution. The thickness of the layer ranges from 5 nm to 15 nm. The leached layer functions as a protective layer and therefore reduces the leaching rate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. G. Dosch, T. J. Headley, C. J. Northrup, and P. F. Hlava, Sandia National Laboratories Report, Sandia 82–2980, 84pp (1982).

    Google Scholar 

  2. A. E. Ringwood, S. E. Kesson, K. D. Reeve, D. M. Levins, and E. J. Ramm, Synroc. In W. Lutze and R. C. Ewing eds., “Radioactive Waste Forms for the Future.” North-Holland, Amsterdam, pp. 233–334 (1988).

    Google Scholar 

  3. A. Jostsons, E. R. Vance, D. J. Mercer, V. M. Oversby, In T. Murakami and R. C. Ewing eds. “Scientific Basis for Nuclear Waste Management XVIII.” Materials Research Society, Pittsburgh, 18 (1995), 775.

    Google Scholar 

  4. W. J. Weber, R. C. Ewing, and W. Lutze, In W. M. Murphy and D. A. Knecht eds., “Scientific Basis for Nuclear Waste Management XIX.” Materials Research Society, Pittsburgh, 19 (1996), 25.

    Google Scholar 

  5. A. J. Bakel, E. C. Buck, and B. Ebbinghaus, (1997) In “Plutonium Future — The Science.” Los Alamos National Laboratories, 135–136 (1997).

    Google Scholar 

  6. B. D. Begg, and E. R. Vance, In W. J. Gray and I. R. Triay eds. “Scientific Basis for Nuclear Waste Management XX.” Materials Research Society, Pittsburgh, 20 (1997), 333.

    Google Scholar 

  7. B. D. Begg, E. R. Vance, R. A. Day, M. Hambley, and S. D. Conradson In W. J. Gray and I. R. Triay eds. “Scientific Basis for Nuclear Waste Management XX.” Materials Research Society, Pittsburgh, 20 (1997), 325.

    Google Scholar 

  8. E. C. Buck, B. Ebbinghaus, A. J. Bakel, and J. K. Bates, In W. J. Gray and I. R. Triay eds. “Scientific Basis for Nuclear Waste Management XX.” Materials Research Society, Pittsburgh, 20 (1997), 1259.

    Google Scholar 

  9. E. R. Vance, MRS Bulletin, 19 (1994), 28.

    Article  CAS  Google Scholar 

  10. E. R. Vance, A. Jostsons, M. W. A. Stewart, R. A. Day, B. D. Begg, M. J. Hambley, K. P. Hart, and B. B. Ebbinghaus, In “Plutonium Future — The Science.” Los Alamos National Laboratories, page 19 (1997).

    Google Scholar 

  11. E. R. Vance, K. P. Hart, R. A. Day, M. L. Carter, M. Hambley, M. G. Blackford, and B. D. Begg, In W. J. Gray and I. R. Triay eds. “Scientific Basis for Nuclear Waste Management XX.” Materials Research Society, Pittsburgh, 20 (1997), 341.

    Google Scholar 

  12. H. Xu, and Y. Wang, J. of Nuclear Materials, 275 (1999), 216.

    Article  CAS  Google Scholar 

  13. Y. Wang, and H. Xu, In R. W. Smithe and D. W. Shoesmith ed. “Scientific Basis for Nuclear Waste Management XXIII.” Materials Research Society, Pittsburgh, 23 (2000), 367.

    Google Scholar 

  14. G. R. Lumpkin, K. L. Smith, G. Mark, and M. G. Blackford, In T. Murakami and R. C. Ewing eds. “Scientific Basis for Nuclear Waste Management XVIII.” Materials Research Society, Pittsburgh, 18 (1995), 885.

    Google Scholar 

  15. A. G. Solomah, T. S. Sridhar, and S. C. Jones, In “Advances in Ceramics, Vol. 20, Nuclear Waste Management II, American Ceramic Society, Columbus, p. 259 (1996).

    Google Scholar 

  16. L. L. Hench, D. E. Clarke, and J. Campbell, Chemical Waste Management, 5 (1984), 149.

    Article  CAS  Google Scholar 

  17. H. Xu, and Y. Wang, J. of Nuclear Materials, 279 (2000), 100.

    Article  CAS  Google Scholar 

  18. J. A. Fortner, E. C. Buck, A. J. G. Ellison, and J. K. Bates, Ultramicroscopy, 67 (1997), 77.

    Article  CAS  Google Scholar 

  19. H. Xu, Y. Wang, and L. L. Barton, J. of Nuclear Materials, 265 (1999), 117.

    Article  CAS  Google Scholar 

  20. R. Giré, R. J. Swope, E. C. Buck, R. Guggenheim, D. Mathys, and E. Reusser, In Robert W. Smith and David W. Shoesmith eds. “Scientific Basis for Nuclear Waste Management XXIII.” Materials Research Society, Pittsburgh, 23 (2000), 519.

    Google Scholar 

  21. T. J. White, American Mineralogist, 69 (1984), 1156.

    CAS  Google Scholar 

  22. P. Bayliss, F. Mazzi, R. Munno, T. J. White, Mineralogical Magazine, 53 (1989), 565.

    Article  CAS  Google Scholar 

  23. H. Xu, Y. Wang, and L. L. Barton, J. of Nuclear Materials, 273 (1999), 343.

    Article  CAS  Google Scholar 

  24. K. G. Knauss, W. L. Bourcier, K. D. McKeegan, C. I. Merzbacher, S. N. Nguyen, F. J. Ryerson, D. K. Smith, H. C. Weed, and L. Newton, Mat. Res. Soc. Symp. Proc.176 (1990), 371.

    CAS  Google Scholar 

  25. S. K. Roberts, W. L. Bourcier, and H. F. Shaw, Radiochim. Acta., 88 (2000), 539.

    Article  CAS  Google Scholar 

  26. K. B. Helean, A. Navrotsky, E. R. Vance, M L. Carter, B. Ebbinghaus, O. Krikorian, J. Lian, L. M. Wang, and J. G. Catalano, J. Nuclear Materials, 303 (2002), 226.

    Article  CAS  Google Scholar 

  27. J. A. Fortner, A. J. Fropf, R. J. Finch, A. J. Bakel, M. C. Hash, and D. B. Chamberlain, J. Nuclear Materials, 304 (2002), 56.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huifang Xu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xu, H., Wang, Y., Zhao, P. et al. U- and Hf-Bearing Pyrochlore and Zirconolite and their Leached Layers Formed in Acidic Solution: Tem Investigation. MRS Online Proceedings Library 757, 62 (2002). https://doi.org/10.1557/PROC-757-II6.2

Download citation

  • Published:

  • DOI: https://doi.org/10.1557/PROC-757-II6.2

Navigation