Skip to main content
Log in

Direct Synthesis of Silicon Nanowires using Silane and Molten Gallium

  • Published:
MRS Online Proceedings Library Aims and scope

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

We report for the first time, bulk synthesis of single crystalline silicon nanowires using molten gallium pools and an activated vapor phase containing silane. The resulting silicon nanowires were single crystalline with <100> growth direction. Nanowires contained an unexpectedly thin, non-uniform oxide sheath determined using high-resolution Transmission Electron Microscopy (TEM). Nanowires were tens of nanometers in diameter and tens to hundreds of microns long. The use of activated gas phase chemistry containing solute of interest over molten metal pools of low-solubility eutectics such as gallium offer a viable route to generate nanowire systems containing abrupt compositional hetero-interfaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R.S. Wagner and W.C. Ellis, Appl. Phys. Lett. 4(5), 89 (89).

  2. A.M. Morales and C.M. Lieber, Science 279, 208 (1998).

    Google Scholar 

  3. J. Westwater, D.P. Gosain, S. Tomiya, S. Usui, H. Ruda, J. Vac. Sci. Technol. B 15(3), 554 (554).

  4. Y.F. Zhang, Y.H. Tang, N. Wang, D.P. Yu, C.S. Lee, I. Bello, S.T. Lee, Appl. Phys. Lett. 72(15), 1835 (1835).

    Google Scholar 

  5. Y. Wu and P. Yang, Chem. Mater. 12, 605 (2000).

    Google Scholar 

  6. Y. Cui. L.J. Lauhon, M.S. Gudiksen, J. Wang, and C.M. Lieber, Appl. Phys. Lett. 78(15), 2214 (2214).

    Google Scholar 

  7. M.K. Sunkara, S. Sharma, R. Miranda, G. Lian, and E.C. Dickey, Appl. Phys. Lett. 79(10), 1546 (1546).

    Google Scholar 

  8. S. Sharma, M.K. Sunkara, R. Miranda, G. Lian, and E.C. Dickey, Proc. MRS Spring 2001 Meeting Vol. 676, Y.1.6.1 (2001).

    Google Scholar 

  9. S. Sharma, M.K. Sunkara, G. Lian, and E.C. Dickey, Proc. MRS Fall 2001 Meeting Vol. 703, 123 (2001).

    Google Scholar 

  10. T.Y. Tan, S.T. Lee, and U. Gosele, Appl. Phys. A. 74, 423 (2002).

    Google Scholar 

  11. J.D. Holmes, K.P. Johnston, R.C. Doty, B.A. Korgel, Science 287, 1471–1473 (1471).

    Google Scholar 

  12. X. Zianni and A.G. Nassiopoulou, Phys. Rev. B. 65, 035326–1 (035326).

  13. H. Yorikawa, H. Uchida, and S. Muramatsu, J. Appl. Phys. 79(7), 3619 (3619).

    Google Scholar 

  14. C.D. Thurmond and M. Kowalchik, The Bell System Tech. J. 39, 169–204 (169).

  15. D. Turnbull, J. Appl. Phys. 21, 1022 (1950).

    Google Scholar 

  16. Y. Wu, R. Fan, and P. Yang, Nano Lett. 2(2), 83 (83).

  17. M.S. Gudikson, L.J. Lauhon, J. Wang, D.C. Smith, and C.M. Lieber, Nature 415, 617 (2002).

    Google Scholar 

  18. H. Chandrasekaran and M.K. Sunkara, MRS Symp. Proc. Vol. 693, 159–164, 2001.

    Google Scholar 

  19. S. Sharma and M.K. Sunkara, J. Am. Chem. Soc. 124(41), 12289 (12289).

Download references

Acknowledgments

We acknowledge partial support from NSF through a CAREER grant (CTS #9876251) and U.S Air Force through AFOSR Program (F49620-00-1-0310).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahendra K. Sunkara.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sharma, S., Sunkara, M.K. & Dickey, E.C. Direct Synthesis of Silicon Nanowires using Silane and Molten Gallium. MRS Online Proceedings Library 737, 62 (2002). https://doi.org/10.1557/PROC-737-F6.2

Download citation

  • Published:

  • DOI: https://doi.org/10.1557/PROC-737-F6.2

Navigation