Skip to main content
Log in

Synthesis of Crystalline Silicon Nanoparticles in Low-Pressure Inductive Plasmas

  • Published:
MRS Online Proceedings Library Aims and scope

Abstract

Amorphous silicon has been used for a wide variety of electronic applications including thin film transistors and energy conversion devices. However, these devices suffer greatly from defect scattering and recombination. A method for depositing crystalline silicon would be highly desirable, especially if it can be remotely created and deposited on any kind of substrate. Our work aims at synthesis and deposition of mono-disperse, single crystal silicon nanoparticles, several tens of nm in diameter on varied substrates. Synthesis of nanocrystals of 2–10 nm diameter has been previously reported but larger particles were amorphous or polycrystalline. This work reports the use of an inductively coupled low-pressure plasma to produce nanocrystals with diameters between 20–80 nm. Electron microscopy studies confirm that the nanocrystals are highly oriented diamond-cubic silicon.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. E. Kruis, H. Fissan, A. Peled, J. Aerosol Sci. 29, 511–535 (1998).

    Google Scholar 

  2. M. L. Ostraat et al., Applied Physics Letters 79, 433–435 (Jul 16, 2001).

    Google Scholar 

  3. H. Hahn, R. S. Averback, J. Appl. Phys. 67, 113 (1990).

    Google Scholar 

  4. M. R. Zachariah, M. I. Aquino, R. D. Shull, E. B. Steel, Nanostruc. Mater. 5, 383–392 (1995).

    Google Scholar 

  5. K. Deppert, J.-O. Bovin, J.-O. Malm, L. Samuelson, J. Crystal Growth 169, 13–19 (1996).

    Google Scholar 

  6. N. P. Rao et al., J. Aerosol Sci. 29, 707 (1998).

    Google Scholar 

  7. R. P. Camata, H. A. Atwater, K. J. Vahala, R. C. Flagan, Applied Physics Letters 68, 3162–3164 (1996).

    Google Scholar 

  8. A. Bouchoule, L. Boufendi, Plasma Sources Sci. Technol. 2, 204 (1993).

    Google Scholar 

  9. L. Boufendi, A. Bouchoule, Plasma Sources Sci. Technol. 3, 263 (1994).

    Google Scholar 

  10. C. Courteille et al., J. Appl. Phys. 80, 2069 (1996).

    Google Scholar 

  11. Y. Watanabe, M. Shiratani, Jpn. J. Appl. Phys. 32, 3074 (1993).

    Google Scholar 

  12. U. Kortshagen, U. Bhandarkar, Phys. Rev. E 60, 887 (1999).

    Google Scholar 

  13. J.-L. Dorier et al., IEEE Trans. Plasma Sci. 24, 101 (1996).

    Google Scholar 

  14. A. Bouchoule, L. Boufendi, Plasma Sources Sci. Technol. 3, 293 (1994).

    Google Scholar 

  15. A. F.i. Morral, R. Brenot, E. A. G. Hamers, R. Vanderhagen, R. R. i. Cabarrocas, Journal of Non-Crystalline Solids 266–269, 48–53 (2000).

    Google Scholar 

  16. G. Viera, S. Huet, M. Mikikian, L. Boufendi, Thin Solid Films 403, 467–470 (2002).

    Google Scholar 

  17. C. Courteille, J.-L. Dorier, J. Dutta, C. Hollenstein, A. A. Howling, J. Appl. Phys. 78, 61 (1995).

    Google Scholar 

  18. S. Oda, Adv. Colloid Interfac. Sci. 71–72, 3137 (1997).

    Google Scholar 

  19. M. A. Lieberman, A. J. Lichtenberg, (1994).

  20. M. Haider, S. Uhlemann, E. Schwan, H. Rose, B. Kabius, K. Urban, Nature 392, 768–769 (1998).

    Google Scholar 

  21. M. Haider, H. Rose, S. Uhlemann, E. Schwan, B. Kabius, K. Urban, Ultramicroscopy 75, 53–60 (1998).

    Google Scholar 

  22. M. Lentzen, B. Jahnen, C. L. Jia, A. Thust, K. Tillmann, K. Urban, Ultramicroscopy 92, 233–242 (2002).

    Google Scholar 

  23. D. B. Williams, C. B. Carter, Transmission Electron Microscopy: A Textbook for Materials Science (Plenum Press, New York and London, 1996).

    Google Scholar 

Download references

Acknowledgments

This work was supported in part by NSF under grant CTS-9876224 and by the MRSEC Program of the National Science Foundation under Award Number DMR-0212302. CRP and CBC acknowledge Prof. Stan Erlandsen for access to the FESEM and Chris Frethem for technical assistance, and Dr. Markus Lentzen and Prof. Knut Urban at IFF-IMF in Jülich for access and assistance with the HRTEM.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bapat, A., Kortshagen, U., Campbell, S.A. et al. Synthesis of Crystalline Silicon Nanoparticles in Low-Pressure Inductive Plasmas. MRS Online Proceedings Library 737, 110 (2002). https://doi.org/10.1557/PROC-737-F1.10

Download citation

  • Published:

  • DOI: https://doi.org/10.1557/PROC-737-F1.10

Navigation