Skip to main content
Log in

Transport Properties of Superlattice Nanowires and Their Potential for Thermoelectric Applications

  • Published:
MRS Online Proceedings Library Aims and scope

Abstract

A theoretical model for the electronic structure and transport properties of superlattice (SL) nanowires is presented, based on the electronic tunneling between quantum dots. Due to the periodic potential perturbation, SL nanowires exhibit unusual features in the electronic density of states that are absent in homogeneous nanowires. Transport property calculations of PbSe/PbS SL nanowires are presented, showing improved thermoelectric performance compared to homogeneous nanowires because of a lower lattice thermal conductivity and an enhanced Seebeck coefficient, indicating that SL nanowires are promising systems for thermoelectric applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. R. Black, Y.-M. Lin, S. B. Cronin, O. Rabin, and M. S. Dresselhaus, Phys. Rev. B 65, 195417 (2002).

    Google Scholar 

  2. L. D. Hick and M.S. Dresselhaus, Phys.Rev.B 47, 12727 (1993).

    Google Scholar 

  3. Y.-M. Lin, O. Rabin, S.B. Cronin, J. Y. Ying and M. S. Dresselhaus, Appl.Phys. Lett. 81, 2403 (2002).

    Google Scholar 

  4. T. C. Harman, P. J. Taylor, M. P. Walsh, and B. E. Laforge, Science 297, 2229 (2002).

    Google Scholar 

  5. M. T. Bjork, B. J. Ohlsson, T. Sass, A. I. Persson, C. Thelander, M. H. Magnusson, K. Deppert, L. R. Wallenberg, and L. Samuelson, Nano Lett. 2, 87(2002).

    Google Scholar 

  6. L. Piraux, I. M. George, J. F. Despres, C. Leroy, E. Ferain, R. Legras, K. Ounadjela, and A. Fert, Appl. Phys. Lett. 65, 2484 (1994).

    Google Scholar 

  7. M. S. Gudiksen, L. J. Laihon, J. Wang, D. C. Smith, C. M. Lieber, Nature 415, 617 (2002)

    Google Scholar 

  8. Y.-M. Lin, O. Rabin, and M. S. Dresselhaus, in Proceedings of the 21th International Conference on Thermoelectrics (IEEE, 2002), in press.

    Google Scholar 

  9. Y.-M. Lin, X. Sun, and M.S. Dresselhaus, Phys.Rev.B 62, 4610 (2000).

    Google Scholar 

  10. C. Kittel, in Introduction to Solid State Physics 7th ed., John Wiley & Sons(New York, 1996), pp. 179–182

  11. T. Zeng and G. Chen, in Proc. International Mechanical Engineering Congress and Exposition 2000, Orlando, ASME HTD-Vol. 366-2, pp. 361–372

  12. C. Dames and G. Chen, in Proceedings of the 21th International Conference on Thermoelectrics (IEEE, 2002), in press.

  13. P. J. Lin and L. Kleinman, Phys. Rev. 142, 478 (1966)

    Google Scholar 

  14. R. S. Alligaier and W. W. Scanlon, Phys. Rev. 111, 1029 (1958)

    Google Scholar 

Download references

Acknowledgments

We thank Dr. G. Dresselhaus, Prof. G. Chen, and Mr. C. Dames for valuable discussions. The support from MURI/UCLA subcontract 0205-G-BBBB853, NSF Grant DMR-01-16042, US Navy Contract N00014-02-1-0865, DARPA-HERETIC/Caltech-JPL Contract number 1237157, and ONR grant N00014-02-1-0865 are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lin, YM., Dresselhaus, M.S. Transport Properties of Superlattice Nanowires and Their Potential for Thermoelectric Applications. MRS Online Proceedings Library 737, 175 (2002). https://doi.org/10.1557/PROC-737-E17.5

Download citation

  • Published:

  • DOI: https://doi.org/10.1557/PROC-737-E17.5

Navigation