Skip to main content
Log in

Differences between Gel-Derived Melts and Those Produced by Batch Melting

  • Published:
MRS Online Proceedings Library Aims and scope

Abstract

Properties of a system at equilibrium depend on pressure, temperature and composition. Thus for a melt produced by the sol-gel (SG) process to be different from an identical composition melted from batch (MB), both cannot be at equilibrium. Non equilibrium melts can be associated with structural differences or homogeneity differences. The former have been suggested for SG melts while the latter is always possible in MB melts. Appropriate relaxation times are presented for structural and heterogeneity relaxation. From this it is concluded that structural differences will not persist unless the SG melt is metastable with respect to the equilibrium melt. A method for testing this unlikely premise is proposed.

Melts which are imperceptibly different from equilibrium may have non-equilibrium crystal embryo distributions that relax toward equilibrium with a time constant longer than that for structural relaxation. A difference in embryo and stable nuclei distribution will result in different crystallization kinetics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Richard Zallen, The Physics of Amorphous Solids, (John Wiley & Sons, New York, 1983). p. 174–183.

    Book  Google Scholar 

  2. G. Kordas and R.A. Weeks, in Effects of Modes of Formation on the Structure of Glass, edited by R.A. Weeks, D.L. Kinser, and G. Kordas (North-Holland, Amsterdam, 1985), p. 327; A.A. Wolf, E.J. Friebele, and D.C. Tran, ibid., pp. 345.

    Google Scholar 

  3. D.L. Kinser, and G. Kordas (North-Holland, Amsterdam, 1985) Ibid, p. 331.

    Google Scholar 

  4. D.L. Kinser, and G. Kordas (North-Holland, Amsterdam, 1985) Ibid, p. 317.

    Google Scholar 

  5. D.L. Kinser, and G. Kordas (North-Holland, Amsterdam, 1985) Ibid, p. 187.

    Google Scholar 

  6. J. Zarzycki, J. Mat. Sci. 19, 1656 (1984).

    Article  Google Scholar 

  7. See also papers by G. Scherer and T. Shaw this meeting.

  8. J. D. Mackenzie, J. Amer. Cer. Soc. 46, 461–70 (1963). Ibid 47, 76–80, 1964.

    Article  CAS  Google Scholar 

  9. W. Primak, L.H. Fuchs, and P. Day, J. Amer. Cer. Soc. 38, 135–139 (1955).

    Article  CAS  Google Scholar 

  10. M. Hara and S. Suetoshi, Report Research Lab, Asahi Glass Co. 5, 126–135, 1955. Also see George W. Scherer, Relaxation in Glass and Composites, (John Wiley & Sons, New York, 1986), p. 118.

    CAS  Google Scholar 

  11. G. Williams and D.C. Watts, Trans. Far. Soc. 66, 80–85 (1970).

    Article  CAS  Google Scholar 

  12. J.W. Cahn and J.E. Hilliard, J. Chem. Phys. 28, 228 (1958).

    Article  Google Scholar 

  13. Shyama P. Mukherjee, J. Non-Cryst. Sol. 63, 35–43 (1984).

    Article  CAS  Google Scholar 

  14. John D. Mackenzie, J. Non-Cryst. Sol. 48, 1–10 (1982).

    Article  CAS  Google Scholar 

  15. D. Kashchiev, Surface Science 14, 209 (1969).

    Article  Google Scholar 

  16. J. Zarzycki, J. Non Cryst. Sol. 48, 105–162 (1982).

    Article  CAS  Google Scholar 

  17. H. Dislich, Angew Chem. Int. Ed. 10, 363–70 (1971).

    Article  CAS  Google Scholar 

  18. M. Yamane, S. Aso, S. Okano and T. Sakaino, J. Mat. Sci. 14, 607 (1979).

    Article  CAS  Google Scholar 

  19. S. Sakka and K. Kamiya, J. Non-Cryst. Sol. 42, 403 (1980).

    Article  CAS  Google Scholar 

  20. V. Gottardi et al., in Thermal Analysis, (Edition Wiedeman Birkhauser, Basel, 1980), p. 493.

    Book  Google Scholar 

  21. C.J. Brinker et al., J. Non-Cryst. Sol. 71, 171 (1985).

    Article  CAS  Google Scholar 

  22. G.W. Scherer, C.J. Brinker and E. Peter Roth, presented at the III International Workshop on Glasses and Glass Ceramics from Gels, to be published.

  23. C. Jeffrey Brinker (private communication).

  24. M.C. Weinberg and G.F. Neilson, J. Amer. Cer. Soc. 66 (2), 132–134 (1983).

    Article  CAS  Google Scholar 

  25. G.F. Neilson and M.C. Weinberg, in Materials Processing in the Reduced Gravity Environment of Space, edited by Guy E. Rindone (Elsevier Science Publishing Co., New York, 1982), p. 333.

    Google Scholar 

  26. M.C. Weinberg and G.F. Neilson, J. Mat. Sci. 13, 1206 (1978).

    Article  CAS  Google Scholar 

  27. P.K. Gupta, in Effects of Modes of Formation on the Structure of Glass, edited by R.A. Weeks, D.L. Kinser, and G. Kordas (North-Holland, Amsterdam, 1985), p. 29 (see eqn. 8, p. 32).

    Google Scholar 

  28. B.E. Yoldas, J. of Non-Cryst. Sol. 51, 105–121 (1982).

    Article  CAS  Google Scholar 

  29. A.R. Cooper, J. Non-Cryst. Sol. 71, 5 (1985).

    Article  CAS  Google Scholar 

  30. G.F. Neilson and M.C. Weinberg, J. of Non-Cryst. Sol. 63, 365–374 (1984).

    Article  CAS  Google Scholar 

  31. A. Grassi et al., Thermochemica Acta 26, 133–138 (1984).

    Article  Google Scholar 

  32. S.P. Mukherjee, J. De Physique 43, C9–265 (1982).

    Google Scholar 

  33. S.P. Mukherjee and J. Zarzycki, J. of Amer. Cer. Soc. 62, 1–4 (1979).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cooper, A.R. Differences between Gel-Derived Melts and Those Produced by Batch Melting. MRS Online Proceedings Library 73, 421–430 (1986). https://doi.org/10.1557/PROC-73-421

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/PROC-73-421

Navigation