Skip to main content
Log in

Thermoelectric Properties of Bi1-xSbx Nanowire Arrays

  • Published:
MRS Online Proceedings Library Aims and scope

Abstract

We present here a thermoelectric transport property study of Bi1−xSbx alloy nanowires embedded in a dielectric matrix. Temperature-dependent resistance measurements exhibit nonmonotonic trends as the antimony mole fraction (x) increases, and a theoretical model is presented to explain the features that are related to the unusual band structure of Bi1−xSbx systems. Seebeck coefficient measurements are performed on nanowires with different diameters and compositions, showing enhanced thermopower over bulk Bi. The magneto-Seebeck coefficient of these nanowires also exhibits an unusual field dependence that is absent in bulk samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. T. Isaacson and G. A. Williams, Phys. Rev. 185, 682 (1969).

    Article  Google Scholar 

  2. Y.-M. Lin, X. Sun, and M. S. Dresselhaus, Phys. Rev. B 62, 4610 (2000).

    Article  CAS  Google Scholar 

  3. J. Heremans, C. M. Thrush, Y.-M Lin, S. Cronin, Z. Zhang, M. S. Dresselhaus, and J. F. Mansfield, Phys. Rev. B 61, 2921 (2000).

    Article  CAS  Google Scholar 

  4. Y.-M. Lin, S. B. Cronin, J. Y. Ying, M. S. Dresselhaus, and J. P. Heremans, Appl. Phys. Lett. 76, 3944 (2000).

    Article  CAS  Google Scholar 

  5. H. J. Goldsmid, Phys. Stat. Sol. (a) 1, 7 (1970).

    Article  CAS  Google Scholar 

  6. B. Lenoir, A. Dauscher, X. Devaux, R. Martin-Lopez, Yu. I. Ravich, H. Scherrer, and S. Scherrer, in Proceedings of the 15th International Conference on Thermoelectrics (IEEE, 1996), pp. 1.

    Google Scholar 

  7. P. Cucka and C. S. Barrett, Acta. Crystallogr. 15, 865 (1962).

    Article  CAS  Google Scholar 

  8. O. Rabin, Y.-M. Lin, and M. S. Dresselhaus, Appl. Phys. Lett. 79, 81 (2001).

    Article  Google Scholar 

  9. T. Koga, X. Sun, S. B. Cronin, and M. S. Dresselhaus, Appl. Phys. Lett. 73, 2950 (1998).

    Article  CAS  Google Scholar 

  10. Z. Zhang, J. Y. Ying, and M. S. Dresselhaus, J. Mater. Res. 13, 1745 (1998).

    Article  CAS  Google Scholar 

  11. Y.-M. Lin, S. B. Cronin, O. Rabin, J. Heremans, M. S. Dresselhaus, and J. Y. Ying, Mater. Res. Soc. Symp. Proc. 635, C4.30 (2000).

    Article  Google Scholar 

  12. Y.-M. Lin, S. B. Cronin, O. Rabin, J. Y. Ying, and M. S. Dresselhaus, Appl. Phys. Lett. 79, 677 (2001).

    Article  CAS  Google Scholar 

  13. J. Heremans and C. M. Thrush, Phys. Rev. B 59, 12579 (1999).

    Article  CAS  Google Scholar 

  14. C. F. Gallo, B. S. Chandrasekar, and P. H. Sutter, J. Appl. Phys. 34, 144 (1963).

    Article  CAS  Google Scholar 

  15. W. M. Yim and A. Amith, Solid State Electronics 15, 1141 (1972).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lin, YM., Cronin, S.B., Rabin, O. et al. Thermoelectric Properties of Bi1-xSbx Nanowire Arrays. MRS Online Proceedings Library 691, 106 (2001). https://doi.org/10.1557/PROC-691-G10.6

Download citation

  • Published:

  • DOI: https://doi.org/10.1557/PROC-691-G10.6

Navigation