Skip to main content
Log in

Tuning the Optical Properties of Large Gold Nanoparticle Arrays

  • Published:
MRS Online Proceedings Library Aims and scope

Abstract

Gold nanoparticles in the mid-nanometer size regime can undergo self-organization into densely packed monoparticulate films at the air-water interface under appropriate passivation conditions. Films could be transferred onto hydrophilic Formvar-coated Cu grids by horizontal (Langmuir-Schaefer) deposition or by vertical retraction of immersed substrates. The latter method produced monoparticulate films with variable extinction and reflectance properties. Transmission electron microscopy revealed hexagonally close-packed arrays on the micron length scale. The extinction bands of these arrays shifted by hundreds of nanometers to near-infrared wavelengths and broadened enormously with increasing periodicity. Large particle arrays also demonstrated extremely high surface-enhanced Raman scattering (SERS), with enhancement factors greater than 107. Signal enhancements could be correlated with increasing periodicity and are in accord with earlier theoretical and experimental investigations involving nanoparticle aggregate structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Murray, C. B.; Kagan, C. R.; Bawendi, M. G. Science 1995, 270, 1335–38.

    Article  CAS  Google Scholar 

  2. Brust, M.; Bethell, D.; Schiffrin, D. J.; Kiely, C. J. Adv. Mater. 1995, 7, 795–97.

    Article  CAS  Google Scholar 

  3. Andres, R. P.; Bielefeld, J. D.; Henderson, J. I.; Janes, D. B.; Kolagunta, V. R.; Kubiak, C. P.; Mahoney, W. J.; Osifchin, R. G. Science 1996, 273, 1690–93.

    Article  CAS  Google Scholar 

  4. Whetten, R. L.; Khoury, J. T.; Alvarez, M. M.; Murthy, S.; Vezmar, I.; Wang, Z. L.; Stephens, P. W.; Cleveland, C. L.; Luedtke, W. D.; Landman, U. Adv. Mater. 1996, 8, 428–33.

    Article  CAS  Google Scholar 

  5. Shalaev, V. M.; Moskovits, M. Nanostructured Materials: Clusters, Composites, and Thin Films; ACS Symposium Series, Vol. 679; American Chemical Society: Washington, DC, 1997.

  6. To the best of our knowledge, the largest unit size reported for a 2D gold nanoparticle array (assembled by electrophoretic deposition) is 18 nm

  7. Giersig, M.; Mulvaney, P. J. Phys. Chem. 1993, 97, 6334–36.

    Article  CAS  Google Scholar 

  8. Giersig, M.; Mulvaney, P. Langmuir 1993, 9, 3408–13.

    Article  CAS  Google Scholar 

  9. Osifchin, R. G., Ph. D. thesis, Purdue University, 1994. The flocculation of alkanethiol-coated Au nanoclusters with diameters larger than 10 nm has also been studied in some detail as a function of surfactant: Weisbecker, C. S., Merritt, M. V., Whitesides, G. M. Langmuir 1996, 12, 3763–72.

    Article  CAS  Google Scholar 

  10. Biggs, S.; Mulvaney, P. J. Chem. Phys. 1994, 100, 8501–05.

    Article  CAS  Google Scholar 

  11. Kane, V.; Mulvaney, P. Langmuir 1998, 14, 3303–11.

    Article  CAS  Google Scholar 

  12. Israelachvili, J. Intermolecular and Surface Forces; 2nd ed.; Academic Press: New York, 1992. Chapter 10.

    Google Scholar 

  13. Kreibig, U.; Vollmer, M. Optical Properties of Metal Clusters; Springer: New York, 1995; Vol. 25.

  14. Henrichs, S.; Collier, C. P.; Saykally, R. J.; Shen, Y. R.; Heath, J. R. J. Am. Chem. Soc. 2000, 122, 4077–83.

    Article  CAS  Google Scholar 

  15. Remacle, F.; Levine, R. D. J. Am. Chem. Soc. 2000, 122, 4084–91.

    Article  CAS  Google Scholar 

  16. The effect of chain density on conformational free energies has been theoretically modeled for surfactant monolayers. See: Szleifer, I.; Ben-Shaul, A.; Gelbart, W. M. J. Phys. Chem. 1990, 94, 5081–89. and references cited within.

    Article  CAS  Google Scholar 

  17. Stavens, K. B.; Pusztay, S. V.; Zou, S.; Andres, R. P.; Wei, A. Langmuir 1999, 15, 8337–39.

    Article  CAS  Google Scholar 

  18. Wei, A.; Stavens, K. B.; Pusztay, S. V.; Andres, R. P. MRS Symp. Proc. Ser. 1999, 581, 59–63.

    Article  Google Scholar 

  19. The synthesis of resorcinarenes similar to 1 is described in the literature: (a) Moran, J. R.; Karbach, S.; Cram, D. J. J. Am. Chem. Soc. 1982, 104, 5826–28.

    Article  CAS  Google Scholar 

  20. Gibb, B. C.; Mezo, A. R.; Causton, A. S.; Fraser, J. R.; Tsai, F. C. S.; Sherman, J. C. Tetrahedron 1995, 51, 8719–32.

    Article  CAS  Google Scholar 

  21. Surfactants with several well-spaced thiol groups have been suggested for enhanced adsorption to gold surfaces because of cooperative binding as well as low probability of desorption via disulfide formation: Schlenoff, J. B.; Li, M.; Ly, H. J. Am. Chem. Soc. 1995, 117, 12528–36.

    Article  CAS  Google Scholar 

  22. Mohri, N.; Matsushita, S.; Inoue, M. Langmuir 1998, 14, 2343–47.

    Article  CAS  Google Scholar 

  23. Fendler, J. H. Curr. Op. Colloid Interface Sci. 1996, 1, 202–07.

    Article  CAS  Google Scholar 

  24. Kim, B.; Tripp, S. L.; Wei, A. J. Am. Chem. Soc. 2001, 123, 7955–56.

    Article  CAS  Google Scholar 

  25. Blodgett, K. A.; Langmuir, I. Phys. Rev. 1937, 21, 964.

    Article  Google Scholar 

  26. Raether, H. Surface Plasmons on Smooth and Rough Surfaces and on Gratings; Springer: Berlin, 1988; Vol. 111.

  27. Hornauer, D.; Kapitza, H.; Raether, H. J. Phys. D 1974, 1, L100.

    Article  Google Scholar 

  28. Kapitza, H. Opt. Comm. 1976, 16, 73.

    Article  CAS  Google Scholar 

  29. Yguerabide, J.; Yguerabide, E. E. Anal. Biochem. 1998, 262, 137–56.

    Article  CAS  Google Scholar 

  30. Yguerabide, J.; Yguerabide, E. E. Anal. Biochem. 1998, 262, 137–56.

    Article  CAS  Google Scholar 

  31. Collier, C. P.; Saykally, R. J.; Shiang, J. J.; Henrichs, S. E.; Heath, J. R. Science 1997, 277, 1978–81.

    Article  CAS  Google Scholar 

  32. Shiang, J. J.; Heath, J. R.; Collier, C. P.; Saykally, R. J. J. Phys. Chem. B 1998, 102, 3425–30.

    Article  CAS  Google Scholar 

  33. Ung, T.; Liz-Marzán, L. M.; Mulvaney, P. J. Chem. Phys. B 2001, 105, 3441–52.

    Article  CAS  Google Scholar 

  34. Wasileski, S. A., Zou, S., Weaver, M. J. Appl. Spectrosc. 2000, 54, 761–72.

    Article  CAS  Google Scholar 

  35. Vo-Dinh, T. Trends Anal. Chem 1998, 17, 557–82.

    Article  CAS  Google Scholar 

  36. Kneipp, K.; Kneipp, H.; Itzkan, I.; Dasari, R. R.; Feld, M. S. Chem. Rev. 1999, 99, 2957–75.

    Article  CAS  Google Scholar 

  37. Gift, A. D.; Ma, J. Y.; Haber, K. S.; McClain, B. L.; Ben-Amotz, D. J. Raman Spectrosc. 1999, 30, 757–765.

    Article  CAS  Google Scholar 

  38. The number of adsorbates in a 30- m diameter spot was approximated by using the surface area of an ideally planar array of hexagonally close-packed particles, which has a surface roughness of 1.8 independent of unit particle size. If surfactant adsorption is assumed to be at 75% maximum coverage (ca. 2 nm2/molecule), the number of adsorbates contributing toward the Raman signal is estimated to be 6.3 × 108 molecules. For experimentally measured cross-sectional areas of 1 in a densely packed geometry, see: (a) Moreira, W. C.; Dutton, P. J.; Aroca, R. Langmuir 1994, 10, 4148–52.

    Article  CAS  Google Scholar 

  39. Kurita, E.; Fukushima, N.; Fujimaki, M.; Matsuzawa, Y.; Kudo, K.; Ichimura, K. J., Mater. Res. 1998, 8, 397–403.

    CAS  Google Scholar 

  40. For further studies, see: Wei, A.; Kim, B.; Sadtler, B.; Tripp, S. L., Chem Phys Chem 2001, 2, in press.

    Google Scholar 

  41. Liver, N.; Nitzan, A.; Gersten, J. I., Chem. Phys. Lett. 1984, 111, 449–54. (b) Tsai et al (1984)

    Article  CAS  Google Scholar 

  42. Garcia-Vidal, F. J.; Pendry, J. B., Phys. Rev. Lett. 1996, 77, 1163–66.

    Article  CAS  Google Scholar 

  43. Blatchford, C. G.; Campbell, J. R.; Creighton, J. A., Surface Sci. 1982, 120, 435–55.

    Article  CAS  Google Scholar 

  44. Albano, E. V.; Daiser, S.; Ertl, G.; Miranda, R.; Wandelt, K., Phys. Rev. Lett. 1983, 51, 2314–17.

    Article  CAS  Google Scholar 

  45. Freeman, R. G.; Grabar, K. C.; Allison, K. J.; Bright, R. M.; Davis, J. A.; Guthrie, A. P.; Hommer, M. B.; Jackson, M. A.; Smith, P. C.; Walter, D. G.; Natan, M. J., Science 1995, 267, 1629–32.

    Article  CAS  Google Scholar 

  46. Xiao, T.; Ye, Q.; Sun, L. J., Phys. Chem. B 1997, 101, 632–38.

    Article  CAS  Google Scholar 

  47. Kneipp, K.; Kneipp, H.; Manoharan, R.; Hanlon, E. B.; Itzkan, I.; Dasari, R. R.; Feld, M. S., Appl. Spectrosc. 1998, 52, 1493–97.

    Article  CAS  Google Scholar 

  48. Jensen, T.; Kelly, L.; Lazarides, A.; Schatz, G. C. J. Cluster Sci. 1999, 10, 295–317.

    Article  CAS  Google Scholar 

  49. Recently, Natan and coworkers have reported a methodology for preparing large colloidal gold nanoparticles with low size dispersity and ellipticity: Brown, K. R.; Walter, D. G.; Natan, M. J. Chem. Mater. 2000, 12, 306–13.

    Article  CAS  Google Scholar 

  50. Blatchford, C. G.; Siiman, O.; Kerker, M. J. Phys. Chem. 1983, 87, 2503–08.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, B., Tripp, S.L. & Wei, A. Tuning the Optical Properties of Large Gold Nanoparticle Arrays. MRS Online Proceedings Library 676, 61 (2001). https://doi.org/10.1557/PROC-676-Y6.1

Download citation

  • Published:

  • DOI: https://doi.org/10.1557/PROC-676-Y6.1

Navigation