Hostname: page-component-848d4c4894-4hhp2 Total loading time: 0 Render date: 2024-04-30T16:46:15.261Z Has data issue: false hasContentIssue false

Periodic Boundary Conditions for Dislocation Dynamics Simulations in Three Dimensions

Published online by Cambridge University Press:  21 March 2011

Vasily V. Bulatov
Affiliation:
Lawrence Livermore National Laboratory, University of California
Moon Rhee
Affiliation:
Lawrence Livermore National Laboratory, University of California
Wei Cai
Affiliation:
Massachusetts Institute of Technology
Get access

Abstract

This article presents an implementation of periodic boundary conditions (PBC) for Dislocation Dynamics (DD) simulations in three dimensions (3D). We discuss fundamental aspects of PBC development, including preservation of translational invariance and line connectivity, the choice of initial configurations compatible with PBC and a consistent treatment of image stress. On the practical side, our approach reduces to manageable proportions the computational burden of updating the long-range elastic interactions among dislocation segments. The timing data confirms feasibility and practicality of PBC for large-scale DD simulations in 3D.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Giessen, E. Van der and Needleman, A., MSMSE, 3, 689 (1995).Google Scholar
2. Fivel, M. and Canova, G.R., MSMSE 7, 752 (1999).Google Scholar
3. Hirth, J.P. and Lothe, J., Theory of Dislocations (Wiley, New York, 1982).Google Scholar
4. Ghoniem, N.M. and Amodeo, R.J., Solid State Phenomena, 3–4, 377 (1988).Google Scholar
5. Wang, H. Y. and LeSar, R., Philos. Mag., A 71, 149 (1995).10.1080/01418619508242962Google Scholar
6. Kubin, L. P. et al. , Solid State Phenomena, 23–24, 455 (1992).10.4028/www.scientific.net/SSP.23-24.455Google Scholar
7. Zbib, H. M., Rhee, M. and Hirth, J. P., Int. J. Mech. Sci., 40, 113 (1998).10.1016/S0020-7403(97)00043-XGoogle Scholar
8. Tang, M. and El-Azab, A., submitted (2000).Google Scholar
9. Canova, G. R., Brechet, Y. and Kubin, L. P., Modeling of Plastic Deformation and Its Engineering Applications, edited by Andersen, S. I. (13th RISO Int. Symp. Mater. Sci. 1992), p. 27.Google Scholar
10. Devincre, B., Computer Simulations in Materials Science, edited by Kirchner, H. O. (Kluwer 1996), p. 309.10.1007/978-94-009-1628-9_18Google Scholar
11. Nye, J. F., Acta Metall., 1, 1 (1953).Google Scholar
12. Arsenlis, A. and Parks, D. M., Acta Mater., 47, 1597 (1999)10.1016/S1359-6454(99)00020-8Google Scholar
13. Indenbom, V. L. and Lothe, J., Elastic Strain Field and Dislocation Mobility (North Holland, Amsterdam, 1992).Google Scholar
14. Bulatov, V. V. and Argon, A. S., MSMSE, 2, 167 (1994).Google Scholar