Skip to main content
Log in

Nanoindentation of Pressure Quenched Fullerenes and Zirconium Metal from a Diamond Anvil Cell

  • Published:
MRS Online Proceedings Library Aims and scope

Abstract

The sample size employed in high pressure diamond anvil cells is limited to a diameter of typically 25 to 150 microns. While this size is often sufficient for diagnostics using synchrotron x-ray diffraction and Raman scattering, ex-situ measurements of mechanical properties using conventional microhardness indentation techniques is not feasible. For some materials, the high pressure phase(s) can be quenched to ambient pressure allowing further characterization by other techniques. We make use of the very small probe volume allowed by nanoindentation to investigate the pressure-quenched structures of both C70 fullerene and zirconium. For the case of C70, we show that the amorphous phase established above 35 GPa can be quenched to ambient, and that it shows a largely elastic indentation loading behavior with a hardness of 30 GPa. We establish that this hard carbon phase contains a mixture of sp2- and sp3-bonded carbon and that it can be produced from C70 fullerene by application of pressure at room temperature. With regard to zirconium metal, we confirm the irreversible transformation from the ambient hexagonal-close-packed phase to the simple hexagonal O-phase (AlB2 structure) and document an 80% increase in hardness that may be attributed to the presence of covalent bonding based on sd2-hybridized orbitals forming graphite-like nets in the (0001) plane of the AlB2 structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H.K. Mao and R. J. Hemley, Phil. Trans. R. Soc. Lond. A 354, 1315–1331 (1996).

    Article  CAS  Google Scholar 

  2. J. R. Patterson, S. A. Catledge, and Y. K. Vohra, App. Phys. Lett. 77, 1 (2000).

    Article  Google Scholar 

  3. A. G. Lyapin, V. V. Brazhkin, E. L. Gromnitskaya, S. V. Popova, O. V. Stalgorova, R. N. Volshin, S. C. Bayliss, and A. V. Sapelkin, Appl. Phys. Lett. 76, 712 (2000).

    Article  CAS  Google Scholar 

  4. V. V. Brazhkin, A. G. Lyapin, S. V. Popova, Yu. V. Antonov, Yu. A. Kluev, and A. M. Naletov, Rev. High Pressure Sci. Technol. 7, 989 (1998).

    Article  CAS  Google Scholar 

  5. S. K. Sikka, Y. K. Vohra, and R. Chidambaram, Progress in Materials Science 27, 245 (1982).

    Article  CAS  Google Scholar 

  6. Y. K. Vohra, E. S. K. Menon, S. K. Sikka, and R. Krishnan, Acta Metall. 29, 457 (1981).

    Article  CAS  Google Scholar 

  7. F. Yu Bychkov, N. Yu Likhanan, and V. A. Maltsev, Fiz. Met. Metalloved. 36, 413 (1973).

    CAS  Google Scholar 

  8. J. E. Doherty, D. F. Gibbons, Acta metal. 19, 275 (1971).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Catledge, S.A., Spencer, P.T., Patterson, J.R. et al. Nanoindentation of Pressure Quenched Fullerenes and Zirconium Metal from a Diamond Anvil Cell. MRS Online Proceedings Library 649, 724 (2000). https://doi.org/10.1557/PROC-649-Q7.24

Download citation

  • Published:

  • DOI: https://doi.org/10.1557/PROC-649-Q7.24

Navigation