Skip to main content
Log in

Microstructural Analysis of Copper Interconnections Using Picosecond Ultrasonics

  • Published:
MRS Online Proceedings Library Aims and scope

Abstract

We demonstrate that picosecond ultrasonics provides detailed information on the structure and properties of patterned arrays of copper fine lines used in silicon chip interconnections. In this method, the sample surface is momentarily heated several °C using a pump laser beam, and the transient change in the optical reflectivity is measured by a probe laser beam. Measurements of the optical reflectivity are made on time scales ranging from picoseconds to nanoseconds, revealing information on electronic, acoustic and thermal properties. We have applied this method to samples consisting of copper line arrays of 0.4 µm linewidth, 0.65 µm pitch and 0.35 µm depth in SiO2 on silicon wafers. For comparison, we examined the picosecond ultrasonic response of 200 nm-thick blanket copper thin films. The patterned Cu lines are found to have long-term oscillations at frequencies of 4.39 and 8.29 GHz with lifetimes at least 10 times longer than the oscillations in the blanket Cu film. A two-dimensional mechanical analysis was developed which uses as input parameters the dimensions and sound velocities of the materials in the sample, and finds the normal mode frequencies and displacements. The main vibrational modes are identified and described for the patterned lines, and the simulations confirm that the lowest frequency modes have very small damping coefficients. Also, the time-dependent signal is shown to reveal details of interface layers and integrity of the copper/liner interface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. Thomsen, H. T. Grahn, H. J. Maris, and J. Tauc, Phys. Rev. B 34, 4129 (1986).

    Article  CAS  Google Scholar 

  2. H.-N. Lin, R. J. Stoner, and H. J. Maris, J.Non-Destructive Eval. 9, 239 (1990).

    Article  Google Scholar 

  3. H. J. Maris, Scientific American, 278, 86 (1998).

    Article  CAS  Google Scholar 

  4. R. J. Stoner and H. J. Maris, Future Fab International, 1, 339n (1997).

    Google Scholar 

  5. Guray Tas and Humphrey J. Maris, Phys. Rev. B 49, 15046 (1994).

    Article  CAS  Google Scholar 

  6. “Studies of Plasticity in Thin Al Films Using Picosecond Ultrasonics”, (G.A. Antonelli and H.J. Maris), to appear in the Proceedings of the Materials Research Society Fall Meeting, Boston, 1999.

    Google Scholar 

  7. W. S. Capinski, H. J. Maris, E. Bauser, I. Silier, M. Asen-Palmer, T. Ruf, M. Cardona, and E. Gmelin, Appl. Phys. Lett. 71, 2109 (1997).

    Article  CAS  Google Scholar 

  8. W. S. Capinski, H. J. Maris, T. Ruf, M. Cardona, K. Ploog, and D. S. Katzer, Phys. Rev. B 59, 8105 (1999).

    Article  CAS  Google Scholar 

  9. V.E. Gusev and O. B. Wright, Phys. Rev. B 57, 2878 (1998).

    Article  CAS  Google Scholar 

  10. G. Tas, R. J. Stoner, H. J. Maris, G. W. Rubloff, G. S. Oehrlein, and J. M. Halbout, Appl. Phys. Lett. 61, 1787 (1992).

    Article  CAS  Google Scholar 

  11. U. Gerhardt, Phys. Rev. 172, 651 (1969).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Harper, J.M.E., Malhotra, S.G., Cabral, C. et al. Microstructural Analysis of Copper Interconnections Using Picosecond Ultrasonics. MRS Online Proceedings Library 612, 751 (2000). https://doi.org/10.1557/PROC-612-D7.5.1

Download citation

  • Published:

  • DOI: https://doi.org/10.1557/PROC-612-D7.5.1

Navigation