Skip to main content
Log in

29Si NMR Chemical Shifts and Energetics of Silica-Serine and Silica-Polyalcohol Complexes as Indicators of Silica Biomineralization Mechanisms

  • Published:
MRS Online Proceedings Library Aims and scope

Abstract

Serine- and polysaccharide-enriched organic matrix is associated with biogenic silica such as diatom tests, sponge spicules, and phytoliths. We have used molecular orbital theory to determine the relative stability and 29Si NMR shifts of direct Si-O-C ester-like bonds versus hydrogen bonds between the monomeric silicic acid and the alcohol group on aliphatic organics such as serine and threitol (a polyacohol as proxy for polysaccharides). Preliminary results suggest that at neutral pHs, H-bonds and ester-bonds of four-fold coordinated silicon are of comparable stability. Formation of ester-like bonds with five-fold coordinated silicon is endothermic at neutral pHs but is stabilized at higher pHs. 29Si shifts of the H-bonded and ester-bonded complexes of four-fold coordinated silicon range from -55 to -73 ppm similar to monomeric inorganic silicic acid but far more positive than the -92, -102, and -110 ppm values observed experimentally in biogenic silicas. The five-coordinated silicon complexes yield shifts of -96 to -107 ppm. The latter range is within the range of inorganic, polymerized silica. If five-fold coordinated Si with direct Si-O-C bonds is present as a precursor or intermediate or stable species in biogenic silica, it could have escaped detection due to overlap with inorganic polymerized silica. Thus, 29Si NMR shifts are not necessarily diagnostic of the presence or absence of Si-O-C bonds in biogenic silica.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Mann Nature 365, p. 499 (1993).

    Article  CAS  Google Scholar 

  2. R. Tacke Angew. Chem. Int. Ed. 38, p. 3015 (1999).

    Article  CAS  Google Scholar 

  3. S. D. Kinrade, J. W. Del Nin, A. S. Schach, T.A. Sloan, K. L. Wildon, and C. T. G. Knight Science 285, p. 1542 (1999).

    Article  CAS  Google Scholar 

  4. R. Hecky, K. Mopper, P. Kilham, T. Degens Mar. Bio. 19, p. 323 (1973).

    Article  CAS  Google Scholar 

  5. K. D. Lobel, J. K. West, and L. L. Hench Mar. Biol. 126, p. 353 (1996).

    Article  CAS  Google Scholar 

  6. K. Shimizu, J. Cha, G. D. Stucky, and D. E. Morse Proc. Natl. Acad. Sci. U.S.A. 95, p. 6234 (1998).

    Article  CAS  Google Scholar 

  7. J. N. Cha, K. Shimizu, Y. Zhou, S. C. Christiansen, B. Chmelka, G. D. Stucky, and D. E. Morse Proc. Natl. Acad. Sci. U.S.A. 96, p. 361 (1999).

    Article  CAS  Google Scholar 

  8. Y. Zhou, K. Shimizu, J. N. Cha, G. D. Stucky, and D. E. Morse Angew. Chem. Int. Ed. 38, p. 780 (1999).

    Article  CAS  Google Scholar 

  9. N. Kroger, R. Deutzmann, and M. Sumper Science 286, p. 1129 (1999).

    Article  CAS  Google Scholar 

  10. S. Mann, C. C. Perry, R. J. P. Williams, C. A. Fyfe, G. C. Gobbi, and G. J. Kennedy J. Chem. Soc., Chem. Commun., p. 168 (1983).

    Google Scholar 

  11. C. C. Perry in Biomineralization: Chemical and Biochemical Perspectives, edited by S. Mann, J. Webb, and R. J. P. Williams (VCH Publishers, Weinheim, 1989), p. 223–256.

  12. C. C. Perry and S. Mann in Origin, Evolution, and Modern Aspects ofBiomineralization in Plants and Animals, edited by R. E. Crick (Plenum Press, NY, 1989), p. 419.

  13. M. W. Schmidt et al. J. Comput. Chem. 15, p. 1347 (1993).

    Article  Google Scholar 

  14. A. Frisch and M. J. Frisch Gaussian 98 User’s Reference pp. 280, (1998).

    Google Scholar 

  15. A. D. Becke Phys. Rev. A 38, 3098 (1988).

    Article  CAS  Google Scholar 

  16. C. Lee, et al., Phys. Rev. B. 37, 785 (1988)

    Article  CAS  Google Scholar 

  17. M. J. Frisch et al. Gaussian 94, Rev. B.3, Gaussian Inc., Pittsburgh, PA (1995).

    Google Scholar 

  18. G. J. Tawa, I. A. Topol, S. K. Burt, R. A. Caldwell, and A. A. Rashin, J. Chem. Phys. 109, p. 4852 (1998).

    Article  CAS  Google Scholar 

  19. K. Wolinski, J. F. Hinton, and P. J. Pulay Am. Chem. Soc., 112, p. 8251 (1992).

    Article  Google Scholar 

  20. B. M. Bode and M. S. Gordon J. Mol. Graphics Mod. 16, p. 133 (1998).

    Article  CAS  Google Scholar 

  21. N. Sahai and J. A. Tossell, manuscript in prep.

  22. R. R. Holmes Chem. Rev. 90, p. 17 (1990).

    Article  CAS  Google Scholar 

  23. R. M. Laine, K. Y. Blohowiak, T. R. Robinson, M. L. Hoppe, P. Nardi, J. Kampf and J. Uhm Nature 353, p. 642 (1991).

    Article  CAS  Google Scholar 

  24. B. Herreros, S. W. Carr, and J. Klinowski Science 263, p. 1585 (1994).

    Article  CAS  Google Scholar 

  25. V. Belot, R. Corriu, C. Guerin, B. Henner, D. Leclercq, H. Mutin H., A. Vioux, and Q. Wang in Better Ceramic Through Chemistry, (Mat. Res. Soc. Symp. Proc. 180, 1990), p. 3–14.

    CAS  Google Scholar 

  26. C. C. Harrison Phytochem. 41, p. 37 (1996).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sahai, N., Tossell, J.A. 29Si NMR Chemical Shifts and Energetics of Silica-Serine and Silica-Polyalcohol Complexes as Indicators of Silica Biomineralization Mechanisms. MRS Online Proceedings Library 599, 249–254 (1999). https://doi.org/10.1557/PROC-599-249

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/PROC-599-249

Navigation