Skip to main content
Log in

Premonitory Martensitic Surface Relief Via Novel X-Ray Diffuse and Laser Light Reflectivity from The (001)-Surface of A Ni63Al37Single Crystal

  • Published:
MRS Online Proceedings Library Aims and scope

Abstract

Both x-ray diffuse reflectivity and laser light scattering have been used to investigate the temperature-dependent surface behavior of a Ni63Al37 single crystal on different length scales. In-situ experiments were performed above the conventional martensitic start temperature Ms to search for premartensitic phenomena. X-ray experiments showed the presence of a surface precursor with second-order (continuous) character several 10 K above Ms. This premonitory effect corresponds to a height-height-correlation function which changes on the nanometer scale as the martensitic transformation is approached. At the martensitic transformation, the surface morphology changed from nanoscopic roughness to macroscopic relief within a temperature interval of less than 1 K via intermediate stages. Laser light scattering was employed to study time-dependent aspects of the athermal martensitic transformation above Ms. The occurrence of a martensitic transformation on isothermal holding after a certain incubation period was observed in Ni-Al for the first time. The measured incubation times increased by four orders of magnitude within a temperature interval of 0.5 K.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Cohen, G.B. Olson and P.C. Clapp, in Proceedings of the International Conference on Martensitic Transformations 1979, edited by W.S. Owen (MIT, Cambridge, 1979), p. 1.

    Google Scholar 

  2. J.W. Christian, G.B. Olson and M. Cohen, J. de Physique IV, Colloq. C8, 3 (1995).

    Google Scholar 

  3. J. van Humbeeck and R. Stalmans, in Shape Memory Materials, edited by K. Otsuka and C.M. Wayman (Cambridge University Press, Cambridge, 1998), p. 176.

    Google Scholar 

  4. L.E. Tanner and M. Wuttig, Mat. Sci. Eng. A 127, 137 (1990).

    Article  Google Scholar 

  5. S.C. Moss, Mat. Sci. Eng. A 127, 187 (1990).

    Article  Google Scholar 

  6. J.W. Christian, A 127, 214 (1990).

  7. S.M. Shapiro, J.Z. Larese, Y. Noda, S.C. Moss and L.E. Tanner, Phys.Rev.Lett. 57, 3199 (1986).

    Article  CAS  Google Scholar 

  8. S.M. Shapiro, B.X. Yang, G. Shirane, Y. Noda and L.E. Tanner, Phys.Rev.Lett. 62, 1298 (1989).

    Article  CAS  Google Scholar 

  9. S.M. Shapiro, E.C. Svensson, C. Vettier and B. Hennion, Phys.Rev.B 48, 13223 (1993).

    Article  CAS  Google Scholar 

  10. J.A. Krumhansl, Solid. State Comm. 84, 251 (1992)

    Article  CAS  Google Scholar 

  11. P.C. Clapp, phys. stat. sol. (b) 57, 561 (1973).

    Article  CAS  Google Scholar 

  12. V.V. Kokorin, Phase Transitions 54, 143 (1995).

    Article  CAS  Google Scholar 

  13. T. Kakeshitaet al, Mater. Trans. JIM 34, 415 (1993); 34, 423 (1993).

    Article  Google Scholar 

  14. M. Aspelmeyer, U. Klemradt, L.T. Wood, S.C. Moss, J. Peisl, phys. stat. sol. (a) 174, R9 (1999).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to U. Klemradt.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Klemradt, U., Aspelmeyer, M., Abe, H. et al. Premonitory Martensitic Surface Relief Via Novel X-Ray Diffuse and Laser Light Reflectivity from The (001)-Surface of A Ni63Al37Single Crystal. MRS Online Proceedings Library 580, 293–302 (1999). https://doi.org/10.1557/PROC-580-293

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/PROC-580-293

Navigation