Skip to main content
Log in

Microstructure Evolution During Solid-State Reactions in Polycrystalline Nb/Al and Ti/Ai Multilayer Thin-Films

  • Published:
MRS Online Proceedings Library Aims and scope

Abstract

The microstructural changes that occur during the reaction of sputter-deposited Nb/Al and Ti/Al multilayer thin-films with bilayer thicknesses ranging from 10 nm to 333 nm have been studied. The films were deposited with an overall stoichiometry of XAl3 (X = Nb,Ti) and subsequently annealed to different stages of the reaction in a differential scanning calorimeter (DSC). Data obtained from cross-sectional transmission electron microscopy (XTEM), and in situ synchrotron X-ray diffraction (XRD) experiments have provided evidence for a two-stage reaction mechanism for the formation of NbAl3. Microscopy results from a film with a bilayer period of 333 nm showed a microstructure that was consistent with two-dimensional growth in the plane of the interface. A uniform, 10 nm thick continuous layer of the product phase was formed followed by growth normal to the interface that initially consisted of larger, faceted grains. By the end of the reaction, an equiaxed NbAl3 grain structure was observed. High resolution elemental mapping using a scanning transmission electron microscope (STEM) revealed penetration of Nb into the Al layer and enhanced growth in regions where Al grain boundaries intersected the interface. Characterization of microstructure evolution in the Ti/Al system was complicated by the formation of two metastable structures consisting of cubic Ll2 followed by tetragonal DO23, and finally the equilibrium, tetragonal DO22 structure. However, the metastable phase transition temperatures were clearly isolated using the in situ XRD technique.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Sullivan, Mat. Res. Soc. Proc. 343, 629 (1994).

    Article  CAS  Google Scholar 

  2. J. E. E. Baglin, F. M. d’Heurle, and W. N. Hammer, J. Appl. Phys. 50, 266 (1979).

    Article  CAS  Google Scholar 

  3. L. A. Clevenger, C. V. Thompson, R. C. Cammarata, and K. N. Tu, Appl. Phys. Lett. 52, 795 (1988).

    Article  CAS  Google Scholar 

  4. K. R. Coffey, L. A. Clevenger, K. Barmak, D. A. Rudman, and C. V. Thompson, J. Appl. Phys. Lett. 55, 852 (1989).

    Article  CAS  Google Scholar 

  5. L. A. Clevenger, C. V. Thompson, R. R. de Avillez, and E. Ma, J. Vac. Sci. Technol. A 8, 1566 (1990).

    Article  CAS  Google Scholar 

  6. E. Ma, C. V. Thompson, and L. A. Clevenger, J. Appl. Phys. 69, 2211 (1991).

    Article  CAS  Google Scholar 

  7. C. Michaelsen, S. Wthlert, R. Bormann, Mat. Res. Soc. Proc. 343, 205 (1994).

    Article  Google Scholar 

  8. E. Emeric, C. Bergman, G. Glugnet, P. Gas, and A. Audier, Phil. Mag. Lett. 78, 77 (1998).

    Article  CAS  Google Scholar 

  9. K. Barmak, C. Michaelsen, S. Vivekanand, F. Ma, Phil. Mag. A 77, 167 (1998).

    Article  CAS  Google Scholar 

  10. S. Srinivasan, P. B. Desch, and R. B. Schwartz, Scripta. Met. 25, 2513 (1991).

    Article  CAS  Google Scholar 

  11. C. Michaelsen, S. Wöhlert, R. Bormann, and K. Barmak, Mat. Res. Soc. Proc. 398, 245 (1996).

    Article  CAS  Google Scholar 

  12. K. Barmak, C. Michaelsen, J. M. Rickman, and M. Dahms, Mat. Res. Soc. Proc. 403, 51 (1996).

    Article  CAS  Google Scholar 

  13. R. F. Lever, J. K. Howard, W. K. Chu, and P. J. Smith, J. Vac. Sci. Technol. 14, 158 (1977).

    Article  CAS  Google Scholar 

  14. M. Wittmer, F. LeGoues, H.-C. W. Huang, J. Electrochem. Soc. 132, 1450 (1985).

    Article  CAS  Google Scholar 

  15. H. E. Kissinger, Anal. Chem. 29 1702 (1957).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lucadamo, G., Barmak, K., Carpenter, D.T. et al. Microstructure Evolution During Solid-State Reactions in Polycrystalline Nb/Al and Ti/Ai Multilayer Thin-Films. MRS Online Proceedings Library 562, 159–164 (1999). https://doi.org/10.1557/PROC-562-159

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/PROC-562-159

Navigation