Skip to main content
Log in

Thermal Conductivity and Phonon Engineering in Low-Dimensional Structures

  • Published:
MRS Online Proceedings Library Aims and scope

Abstract

Understanding phonon heat conduction mechanisms in low-dimensional structures is of critical importance for low-dimensional thermoelectricity. In this paper, we discuss heat conduction mechanisms in two-dimensional (2D) and one-dimensional (1D) structures. Models based on both the phonon wave picture and particle picture are developed for heat conduction in 2D superlattices. The phonon wave model, based on the acoustic wave equations, includes the effects of phonon interference and tunneling, while the particle model, based on the Boltzmann transport equation, treats the internal as well interface scattering of phonons. For 1D systems, both the Boltzmann transport equation and molecular dynamics simulation approaches are employed. Comparing the modeling results with experimental data suggest that the interface scattering of phonons plays a crucial role in the thermal conductivity of low-dimensional structures. We also discuss the minimum thermal conductivity of low-dimensional structures based on a generalized thermal conductivity integral, and suggest that the minimum thermal conductivities of low-dimensional systems may differ from those of their corresponding bulk materials. The discussion leads to alternative ways to reduce thermal conductivity based on the propagating phonon modes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. D. Hicks and M.S. Dresselhaus, Phys. Rev. B., 7, 12727 (1993).

    Article  Google Scholar 

  2. T.C. Harman, D.L. Spears, and M.J. Manfra, J. Electron. Mat., 25, 1121 (1996).

    Article  CAS  Google Scholar 

  3. R. Venkatasubramanian, Nav. Res. News, XLVIII, 31, (Four/1996).

    Google Scholar 

  4. T. Yao, Appl. Phys. Lett., 51, 1798 (1987).

    Article  CAS  Google Scholar 

  5. G. Chen, C.L. Tien, X. Wu and S. Smith, J. Heat Transf., 116, 325 (1994).

    Article  CAS  Google Scholar 

  6. X.Y. Yu, G. Chen, A. Verma, and J.S. Smith, Appl. Phys. Lett., 67, 3553 (1995).

    Google Scholar 

  7. W.S. Capinski and H.J. Maris, Physica B, 219, 699 (1996).

    Article  Google Scholar 

  8. S.-M. Lee, D. Cahill, and R. Venkatasubramanian, Appl. Phys. Lett., 70, 2957 (1997).

    Article  CAS  Google Scholar 

  9. T. Borca-Tasciuc, et al., presented at this symposium.

  10. R. Venkatasubramanian, E. Siivola, and T. Colpits, ICT’98, 191 (1998).

    Google Scholar 

  11. G. Chen, et al., ICT’98, 202 (1998).

    Google Scholar 

  12. W.S. Capinski et al., Physica, C, in press.

  13. S.Y. Ren and J.D. Dow, Phys. Rev. B, 25, 3755 (1982).

    Google Scholar 

  14. G. Chen and C.L. Tien, J. Thermophys. & Heat Transf., 7, 311 (1993).

    Article  CAS  Google Scholar 

  15. P. Hyldgaard and G. Mahan, in Thermal Conductivity 23, 172 (1995).

    Google Scholar 

  16. G. Chen, J. Heat Transf., 119, 220 (1997).

    Article  CAS  Google Scholar 

  17. P. Hyldgaard and G.D. Mahan, Phys. Rev. B., 56, 10754 (1997).

    Article  CAS  Google Scholar 

  18. G. Chen and M. Neagu, Appl. Phys. Lett., 71, 2761 (1997).

    Article  CAS  Google Scholar 

  19. G. Chen, Phys. Rev. B, 57, 14958 (1998).

    Article  CAS  Google Scholar 

  20. J. Jackle, Solid State Comm., 39, 1261 (1981).

    Article  Google Scholar 

  21. M.J. Kelly, J. Phys. C.: Solid State Phys., 15, L969 (1982).

    Article  Google Scholar 

  22. A. Greiner et al, Phy. Rev. Lett., 78, 1114 (1997).

    Article  CAS  Google Scholar 

  23. A. Potts, M.J. Kelly et al., Superlattices and Microstructures, 9, 315 (1991).

    Article  CAS  Google Scholar 

  24. T.S. Tighe, J.M. Worlock, and M.L. Roukes, Appl. Phys. Lett., 70, 2687 (1997).

    Article  CAS  Google Scholar 

  25. J. Seyler and M.N. Wybourne, Phys. Rev. Lett., 9, 1427 (1992).

    Article  Google Scholar 

  26. A.H. Nayfeh, Wave Propagation in Layered Anisotropic Media, (Elsvier, Amsterdam, 1995)

    Google Scholar 

  27. W.A. Little, Can. J. Phys., 37, 334 (1959).

    Article  CAS  Google Scholar 

  28. E.T. Swartz and R.O. Pohl, Rev. Mod. Physs, 61, 605 (1989).

    Article  Google Scholar 

  29. R.J. Stoner and H.J. Maris, Phys. Rev. B, 48, 16373 (1993).

    Article  CAS  Google Scholar 

  30. S. Tamura, D.C. Hurley, and J.P. Wolfe, Phys. Rev. B, 38, 1427 (1989).

    Article  Google Scholar 

  31. C. Colvard et al., Phys. Rev. B, 31, 2080 (1985).

    Article  CAS  Google Scholar 

  32. V. Narayanamurti et al., Phys. Rev. Lett., 43, 2012 (1979).

    Article  CAS  Google Scholar 

  33. G. Chen, ASME Proc., HTD-Vol.357–3, 205 (1998).

    CAS  Google Scholar 

  34. B. Jusserand, Phys. Rev. B, 42, 7256 (1990).

    Article  CAS  Google Scholar 

  35. S. Volz and G. Chen, Physica B, in press.

  36. S. Volz and G. Chen, Proc. ASME HTD-361–4, 199 (1998).

    Google Scholar 

  37. W.S. Capinski et al., Appl. Phys. Lett., 71, 2109 (1997).

    Article  CAS  Google Scholar 

  38. G.A. Slack, in Solid State Physics, 34, 1 (1979).

    Article  CAS  Google Scholar 

  39. D.G. Cahill, S.K. Waston and R.O. Pohl, Phys. Rev. B, 46, 6131 (1992).

    Article  CAS  Google Scholar 

  40. H. Grille, K. Karch, F. Bechstedt, Physica B, 220, 690 (1996).

    Article  Google Scholar 

  41. R.S. Prasher and P.E. Phelan, in ASME Proc. HTD-Vol.357–3, 195 (1998).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Chen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, G., Volz, S.G., Borca-Tasciuc, T. et al. Thermal Conductivity and Phonon Engineering in Low-Dimensional Structures. MRS Online Proceedings Library 545, 357–368 (1998). https://doi.org/10.1557/PROC-545-357

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/PROC-545-357

Navigation