Skip to main content
Log in

Competing Initial Reactions at Transition-Metal/Silicon Interfaces

  • Published:
MRS Online Proceedings Library Aims and scope

Abstract

The process of suicide formation by contact reaction at metal/Si interfaces normally involves rather uniform motion of the growth fronts which separate metal, suicide, and Si regions, as has been observed for suicide growth in many transition-metal/Si systems. At lower temperatures, however, the reaction behavior can be complicated significantly by the presence of other material reactions which may compete with interfacial suicide formation. For refractory metals, strong interfacial mixing over considerable depth (~ 100 Å or more) is observed at temperatures too low for the normal interfacial suicide formation process to contribute; the highly nonuniform character of this reaction, as shown by ion scattering and TEM studies, suggests that other material reactions (e.g., grain boundary diffusion) must dominate the interfacial chemistry at low temperature. In a similar way, anomalous and nonuniform reaction behavior during the low temperature deposition of initial transition metal layers on Si apparently involves surface diffusion processes which are faster than interfacial suicide formation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. N. Tu and J. W. Mayer, in Thin Films - Interdiffusion and Reactions, edited by J. M. Poate, K. N. Tu, and J. W. Mayer (Wiley, New York, 1978), p. 359.

  2. G. W. Rubloff, R. Tromp, and E. J. van Loenen, submitted for publication.

  3. R. M. Tromp, G. W. Rubloff, and E. J. van Loenen, J. Vac. Sci. Technol. (in press).

  4. G. W. Rubloff, Surface Science 132, 268 (1983).

    Article  CAS  Google Scholar 

  5. G. W. Rubloff, Advances in Solid State Physics Festkorperprobleme Vol. XXIII p. 179, P. Grosse (ed.), (Vieweg, Braunschweig, F.R. Germany, 1983).

  6. R. Butz, G. W. Rubloff, T. Y. Tan, and P. S. Ho, Phys. Rev. B15 30, 5421 (1984).

    Article  CAS  Google Scholar 

  7. J. G. Clabes, G. W. Rubloff, and T. Y. Tan, Phys. Rev. B15 29, 1540 (1984).

    Article  CAS  Google Scholar 

  8. E. J. van Loenen, J. W. M. Frenken, and J. F. van der Veen, Appl. Phys. Letters 45, 42 (1984).

    Google Scholar 

  9. E. J. van Loenen, A.E.M.J. Fischer, and J. F. van der Veen, Surface Science 155, 65 (1985).

    Article  Google Scholar 

  10. R. Matz, R. J. Purtell, Y. Yokota, G. W. Rubloff, and P. S. Ho, J. Vac. Sci. Technol. A 2, 253 (1984).

    Article  CAS  Google Scholar 

  11. A. Franciosi, D. J. Peterman, and J. H. Weaver, J. Vac. Sci. Technol. 19, 657 (1981).

    Article  CAS  Google Scholar 

  12. G. W. Rubloff, Ultramicroscopy 14, 107 (1984).

    Article  CAS  Google Scholar 

  13. G. Rossi, I. Abbati, L. Braicovich, I. Lindau, and W. E. Spicer, Phys. Rev. B15 25, 3627 (1982).

    Article  CAS  Google Scholar 

  14. L. Braicovich, Surface Science 132, 315 (1983).

    Article  CAS  Google Scholar 

  15. N. W. Cheung, P. J. Grunthaner, F. J. Grunthaner, J. W. Mayer, and B. M. Ulrich, J Vac. Sci. Technol. 18, 917 (1981).

    Article  CAS  Google Scholar 

  16. P. J. Grunthaner, F. J. Grunthaner, A. Madhukar, and J. W. Mayer, J. Vac. Sci. Technol. 19, 649 (1981).

    Article  CAS  Google Scholar 

  17. A. Franciosi and J. H. Weaver, Surface Science 132, 324 (1983).

    Article  CAS  Google Scholar 

  18. N. W. Cheung, R. J. Culbcrtson, L. C. Feldman, P. J. Silverman, K. W. West, and J. W. Mayer, Phys. Rev. Letters 45, 120 (1980).

    Article  CAS  Google Scholar 

  19. N. W. Cheung and J. W. Mayer, Phys. Rev. Letters 46, 671 (1981).

    Article  CAS  Google Scholar 

  20. R. M. Tromp, E. J. van Loenen, M. Iwami, R. G. Smeenk, F. W. Saris, F. Nava, and G. Ottaviani, Surface Science 124, 1 (1983).

    Article  CAS  Google Scholar 

  21. J. Stöhr and R. Jaeger. J. Vac. Sci. Technol. 21, 619 (1982).

    Article  Google Scholar 

  22. P. S. Ho, P. E. Schmid, and H. Föll, Phys. Rev. Letters 46, 782 (1981).

    Article  CAS  Google Scholar 

  23. H. Föll, P. S. Ho, and K. N. Tu, Phil. Mag. A45, 31 (1982).

    Article  Google Scholar 

  24. D. Cherns, D. A. Smith, W. Krakow, and P. E. Batson, Phil. Mag. 45, 107 (1982).

    Article  CAS  Google Scholar 

  25. R. T. Tung, J. M. Gibson, and J. M. Poate, Phys. Rev. Letters 50, 429 (1983).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rubloff, G.W. Competing Initial Reactions at Transition-Metal/Silicon Interfaces. MRS Online Proceedings Library 54, 3–12 (1985). https://doi.org/10.1557/PROC-54-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/PROC-54-3

Navigation