Skip to main content
Log in

Carrier Transport and Velocity Overshoot in Strained Si on Sige Heterostructures

  • Published:
MRS Online Proceedings Library Aims and scope

Abstract

We examine the velocity overshoot effect in strained Six on Six-Ge1-x heterostructures. We also investigate the performance of surface-channel strained-Si MOSFETs for devices with gate lengths representative of the state-of-the-art technology. The Ensemble Monte Carlo method, self-consistently coupled with the 2D Poisson equation solver, is used in the investigation of the device performance. Our simulations suggest that, in short-channel devices, velocity overshoot is very important. In fact, when velocity overshoot occurs, it greatly affects the carrier dynamics and the current enhancement factor of both surface-channel strained-Si and conventional Si MOSFETs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. H. Dennard, F. H. Gaensslen, H.-N. Yu, V. L. Rideout, E. Bassous, and A. R. LeBlanc, IEEE J. Solid-State Circuits 9, 256 (1974).

    Google Scholar 

  2. J. R. Brews, W. Fichtner, E. H. Nicollian, and S. M. Sze, IEEE Electron Device Lett. 1, 2 (1980).

    Google Scholar 

  3. D. K. Ferry, and L. A. Akers, IEEE Circuits and Devices Magazine 13, 41 (1997).

    Google Scholar 

  4. M. Ono, M. Saito, T. Yoshitomi, C. Fiegna, T. Ohguro and H. Iwai, IEDM Tech. Dig., 119 (1993); IEEE Trans. Electron Devices 42, 1822 (1995).

    Google Scholar 

  5. G. Abstreiter, H. Brugger, T. Wolf, H. Jorke, and H. J. Herog, Phys. Rev. Lett. 54, pp.2441–2444 (1985).

    CAS  Google Scholar 

  6. B.S. Meyerson, K.J. Uram and F.K. LeGoues, Appl. Phys. Lett. 53, 2555 (1988).

    CAS  Google Scholar 

  7. K. Ismail, M. Arafa, K. L. Saenger, J.O. Chu, and B.S. Meyerson, Appl. Phys. Lett. 66, 1077 (1995).

    CAS  Google Scholar 

  8. S. S. Iyer, G. L. Patton, J.M.C. Stork, B. S. Meyerson, and D. L. Harame, IEEE Trans. Electron Devices 36, 2043 (1989).

    CAS  Google Scholar 

  9. D. L. Harame, J. H. Comfort, J. D. Cressler, E. F. Crabbé, J. Y.-C. Sun, B. S. Meyerson, and T. Tice, IEEE Trans. Electron Devices 42, 455 (1995); IEEE Trans. Electron Devices 42, 469 1995.

    CAS  Google Scholar 

  10. J.D. Cressler, IEEE Spectrum 32, 49 (1995).

    Google Scholar 

  11. J. R. Long, M. A. Copeland, S. J. Kovacic, D. S. Malhi, D. L. Harame, and J. H. Wuorinen, 1996 IEEE International Solid-State Circuits Conference (ISSCC), Digest of Technical Papers, (San Francisco, CA), 82, 423.

    Google Scholar 

  12. T. P. Pearsall, CRC Critical Rev. Solid State Material Sci. 15, 551 (1989).

    CAS  Google Scholar 

  13. J. Welser, J. L. Hoyt, and J. F. Gibbons, IEDM Tech. Dig., 1000 1992; IEEE Trans. Electron Devices 40, 2101 (1993); IEDM Tech. Dig., 545 (1993).

    Google Scholar 

  14. J. Welser, J. L. Hoyt, S. Takagi, and J. F. Gibbons, IEDM Tech. Dig., 373 (1994).

    Google Scholar 

  15. K. Rim, J. Welser, J. L. Hoyt, and J. F. Gibbons, IEDM Tech. Dig., 517 (1995).

    Google Scholar 

  16. S. Takagi, J.L. Hoyt, J.J. Welser, and J.F. Gibbons, J. Appl. Phys. 80, 1567 (1996).

    CAS  Google Scholar 

  17. K. Bhaumik, Y. Shacham-Diamand, J.-P. Noël, J. Bevk, and L.C. Feldman, IEEE Trans. Electron Devices 43, 1965 (1996).

    CAS  Google Scholar 

  18. M. M. Rieger and P. Vogl, Phys. Rev. B 48, 14276 (1993).

    CAS  Google Scholar 

  19. G.F. Formicone, D. Vasileska, and D.K. Ferry, Solid-State Electronics 41, 879 (1997).

    CAS  Google Scholar 

  20. T. Yamada, J.-R. Zhou, H. Miyata, and D.K. Ferry, IEEE Trans. Electron Devices 41, 1513 (1994).

    CAS  Google Scholar 

  21. G. F. Formicone, D. Vasileska, and D. K. Ferry, Phys. Stat. Sol. (b) 204, 531 (1997).

    CAS  Google Scholar 

  22. J.-R. Zhou, and D. K. Ferry, IEEE Trans. Electron Devices 39, 473 (1992).

    Google Scholar 

  23. J.-R. Zhou, and D.K. Ferry, IEEE Trans. Electron Devices 40, 421 (1993).

    Google Scholar 

  24. C. Jacoboni, and L. Reggiani, Rev. Mod. Phys. 55, 645 (1983).

    CAS  Google Scholar 

  25. D. K. Ferry, Semiconductors Macmillan Publishing Company, New York, 1991).

    Google Scholar 

  26. C. Herring and E. Vogt, Phys. Rev. 101, 944 (1956).

    CAS  Google Scholar 

  27. B. K. Ridley, Quantum Processes in Semiconductors Oxford University Press Inc., New York, 1993).

    Google Scholar 

  28. H. Miyata, T. Yamada and D. K. Ferry, Appl. Phys. Lett. 62, 2661 (1993).

    CAS  Google Scholar 

  29. T. Yamada and D. K. Ferry, Solid-State Electronics 38, 881 (1995).

    CAS  Google Scholar 

  30. R. W. Hockney and J. W. Eastwood, Computer Simulation Using Particles McGraw-Hill, Maidenhead, 1981).

    Google Scholar 

  31. P. Lugli, IEEE Trans. Computer-Aided Design 9, 1164 (1990).

    Google Scholar 

  32. S. E. Laux, IEEE Trans. CAD Integr. Circ. Syst. 15, 1266 (1996).

    Google Scholar 

  33. K. Ismail, B. S. Meyerson, S. Rishton, J. Chu, S. Nelson, and J. Nocera, IEEE Electron Device Lett. 13, 229 (1992).

    CAS  Google Scholar 

  34. M.V. Fischetti, and S.E. Laux, Phys. Rev. B 38, 9721 (1988).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ferry, D.K., Formicone, G. & Vasileska, D. Carrier Transport and Velocity Overshoot in Strained Si on Sige Heterostructures. MRS Online Proceedings Library 533, 31–42 (1998). https://doi.org/10.1557/PROC-533-31

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/PROC-533-31

Navigation