Skip to main content
Log in

Pulsed Plasma Enhanced Chemical Vapor Deposition from CH2F2, C2H2F4, and CHClF2

  • Published:
MRS Online Proceedings Library Aims and scope

Abstract

Pulsed plasma enhanced chemical vapor deposition films have been grown from C2H2F4, CH2F2, and CHCLF2. C-Is x-ray photoelectron spectroscopy (XPS) indicates a prevalence of C-CF species in the films from C2H2F4 and CH2F2, whereas CF2 species dominate the films from CHC1F2. The CFx species distributions for the films are largely controlled by the competition between CF2-producing and HF elimination reactions in the pulsed plasmas. Dominance by HF elimination produces films with high C-CF and CF concentrations (e.g., CH2F2), whereas dominance by CF2-producing reactions leads to films with higher CF2 concentrations (e.g., CHCIF2). The % CF3 in the film is lowest for the precursor having the lowest F:H ratio, CH2F2. Little or no hydrogen was detected in the deposited films. Thermal degradation of films from C2H2F4 and CH2F2, as probed by solid-state nuclear magnetic resonance (NMR) spectroscopy, shows a loss through CF3 detachment and HF elimination. Pulsed plasma films from all three precursors gave dielectric constants of 2.4, with loss tangents on the order of 10-2. Dielectric measurements of pulsed plasma films from hexafluoropropylene oxide (HFPO) gave a dielectric constant of 2.0 ± 0.1 with a loss tangent of 0.009.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. K. Laxman, Semiconductor Intl. 18, 71–74 (1995).

    CAS  Google Scholar 

  2. P. Singer, Semiconductor Intl. 19, 88–96 (1996).

    CAS  Google Scholar 

  3. C. R. Savage, R. B. Timmons, and J. W. Lin, Chem. Mater. 3, 575–577 (1991).

    Article  CAS  Google Scholar 

  4. C. R. Savage, R. B. Timmons, and J. W. Lin, in Advances in Chemistry Series; Vol. 236 (American Chemical Society, 1993), p. 745–768.

    Google Scholar 

  5. K. Endo, MRS Bulletin 22, 55–58 (1997).

    Article  CAS  Google Scholar 

  6. K. Endo and T. Tatsumi, J. Appl. Phys. 78, 1370–1372 (1995).

    Article  CAS  Google Scholar 

  7. W. W. Lee and P. S. Ho, MRS Bulletin 22, 19–23 (1997).

    Article  CAS  Google Scholar 

  8. C. B. Labelle, S. J. Limb, K. K. Gleason, and J. A. Bums, in Characterization of Pulsed-Plasma Enhanced Chemical Vapor Deposited Fluorocarbon Thin Films, Santa Clara, CA, 1997 (DUMIC), p. 98–105.

    Google Scholar 

  9. J. W. Cobum and H. F. Winters, Journal of Vacuum Science and Technology 16, 391 (1979).

    Article  Google Scholar 

  10. R. d’Agostino, P. Capezzuto, G. Bruno, and F. Cramarossa, Pure and Applied Chemistry 57, 1287 (1985).

    Article  Google Scholar 

  11. H. Yasuda, Plasma Polymerization (Academic Press, Inc., New York, 1985).

    Google Scholar 

  12. H. Yasuda, J. Macromol. Sci.-Chem. A10, 383–420 (1976).

    Article  CAS  Google Scholar 

  13. N. Morosoff, B. Crist, M. Bumgarner, T. Hsu, and H. Yasuda, J. Macromol. Sci.-Chem. A10, 451–471 (1976).

    Article  CAS  Google Scholar 

  14. C. B. Labelle, S. J. Limb, and K. K. Gleason, J. Appl. Phys. 1, 1784–1787 (1997).

    Article  Google Scholar 

  15. S. J. Limb, D. J. Edell, E. F. Gleason, and K. K. Gleason, Journal of Applied Polymer Science 67, 1489–1502 (1998).

    Article  CAS  Google Scholar 

  16. S. J. Limb, K. K. Gleason, D. J. Edell, and E. F. Gleason, J. Vac. Sci. Technol. A 15, 1814–1818 (1997).

    Article  CAS  Google Scholar 

  17. M. B. Knickelbein, D. A. Webb, and E. R. Grant, in New Devices for the Production of Intense Pulsed Jets of CF2: Laser Spectroscopic Characterization, Boston, MA, 1984 (Materials Research Society), p. 23–33.

    Google Scholar 

  18. S. J. Limb, C. B. Labelle, K. K. Gleason, D. J. Edell, and E. F. Gleason, Appl. Phys. Lett. 68, 2810–2812 (1996).

    Article  CAS  Google Scholar 

  19. C. B. Labelle, S. Karecki, R. R. Reif, and K. K. Gleason. (manuscript in progress).

  20. K. K. S. Lau and K. K. Gleason, Journal of Physical Chemistry B 101, 6839 (1997).

    Article  CAS  Google Scholar 

  21. K. K. S. Lau and K. K. Gleason. (submitted to J. Phys. Chem. B).

  22. R. Martinez, F. Castano, M. N. S. Rayo, and R. Pereira, Chemical Physics 172, 349–361 (1993).

    Article  CAS  Google Scholar 

  23. G. E. Millward, R. Hartig, and E. Tschuikow-Roux, J. Phys. Chem. 75, 3195–3201 (1971).

    Article  CAS  Google Scholar 

  24. M.-C. Su, S. S. Kumaran, K. P. Lim, J. V. Michael, and A. F. Wagner, J. Phys. Chem. 100, 15827–15833 (1996).

    Article  CAS  Google Scholar 

  25. J. W. Edwards and P. A. Small, Nature 202, 1329 (1964).

    Article  CAS  Google Scholar 

  26. G. R. Barnes, R. A. Cox, and R. F. Simmons, Journal of the Chemical Society (B) 6, 1176–1180 (1971).

    Google Scholar 

  27. P. W. Atkins, Physical Chemistry, 4th ed. (W. H. Freeman and Company, NY, NY, 1990).

  28. S. J. Limb, D. J. Edell, E. F. Gleason, and K. K. Gleason. (submitted to Chemistry of Materials).

  29. R. d’Agostino, F. Cramarossa, F. Fracassi, and F. Illuzzi, in Plasma Deposition, Treatment, and Etching of Polymers, edited by R. d’Agostino (Academic Press, San Diego, CA, 1990), p. 95–162.

  30. S. F. Politanskii and V. U. Shevchuk, Kinetika i Kataliz 9, 496–503 (1968).

    CAS  Google Scholar 

  31. G. E. Millward, R. Hartig, and E. Tschuikow-Roux, Journal of the Chemical Society, Chemical Communications, 465–466 (1971).

    Google Scholar 

  32. A. D. Tserepi, J. Derouard, J. P. Booth, and N. Sadeghi, J. Appl. Phys. 81, 2124–2130 (1997).

    Article  CAS  Google Scholar 

  33. J. McMurry, Organic Chemistry, 3rd ed. (Brooks/Cole Publishing Company, Pacific Grove, CA, 199).

  34. M. J. Danilich, D. J. Burton, and R. E. Marchant, Vibrational Spectroscopy 9, 229–234 (1995).

    Article  CAS  Google Scholar 

  35. R. M. Silverstein, G. C. Bassler, and T. C. Morrill, Spectroscopic Identification of Organic Compounds, 5th ed. (Wiley & Sons, Inc., NY, NY, 1991).

    Google Scholar 

  36. L. Solymar and D. Walsh, Lectures on the electrical properties of materials (Oxford University Press, New York, NY, 1984).

    Google Scholar 

  37. A. T. DiBenedetto, The Structure and Properties of Materials (McGraw-Hill Book Company, New York, NY, 1967).

    Google Scholar 

  38. J. A. Theil, G. Kooi, F. Mertz, G. Ray, and K. Seaward, in The Effect of Thermal Cycling on a- C:F, H Low Dielectric Constant Films Deposited by ECR Plasma Enhanced Chemical Vapor Deposition, San Francisco, CA, 1998.

    Google Scholar 

  39. J. A. Theil, F. Mertz, M. Yairi, K. Seaward, G. Ray, and G. Kooi, in Thermal Stabiility of a-C:F, H Films Deposited by Electron Cyclotron Resonance Plasma Enhanced Chemical Vapor Deposition, San Francisco, CA, 1997 (Materials Research Society).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Labelle, C.B., Lau, K.K.S. & Gleason, K.K. Pulsed Plasma Enhanced Chemical Vapor Deposition from CH2F2, C2H2F4, and CHClF2. MRS Online Proceedings Library 511, 75–86 (1998). https://doi.org/10.1557/PROC-511-75

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/PROC-511-75

Navigation