Skip to main content
Log in

Infrared Optical Studies of Semiconductors at Large Hydrostatic Pressures

  • Published:
MRS Online Proceedings Library Aims and scope

Abstract

Among the various external disturbances used in the study of semiconductors, including electric and magnetic fields as well as uniaxial pressure, large hydrostatic pressures can be employed to induce dramatic changes in host lattice, dopant and defect properties. Diamond anvil cells with an appropriate pressure medium (e.g. liquid N2 or alcohol mixtures) allow the application of pressures up to hundreds of kbar. In this pressure range the global conduction band minimum of a semiconductor can become a local minimum. GaAs for example changes near 45 kbar from a direct (Г-band) to an indirect (X-band) semiconductor. Donors in GaAs and InP transform from their shallow, hydrogenic state to the DX configuration at hydrostatic pressures near 23 and 82 kbar, respectively. This donor configuration change has been studied using local vibrational mode (LVM) spectroscopy in the far infrared region of the electromagnetic spectrum. Recently we have investigated several LVMs's of H-containing complexes in GaAs as a function of hydrostatic pressure at liquid He temperatures. Depending on the specific complex we find the LVM frequencies to vary either linearly, sub- or superlinearly with hydrostatic pressure. In the case of O in Si the vibrational mode changes its character from that of a harmonic oscillator to a rotor as pressure is applied. The implications of the pressure dependences of LVMs's are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R.C. Newman, Adv. Phys. 18, 545 (1969); see also R.C. Newman, Infrared Studies of Crystal Defects. (Taylor and Francis, London, 1973) and Festkörperprobleme XXV (Advances in Solid State Physics), edited by D. Grosse, (Vieweg, Braunschweig, 1985).

    Article  CAS  Google Scholar 

  2. E.E. Haller, in Defect and Impurity Engineered Semiconductors and Devices, edited by S. Ashok, J. Chevallier, I. Akasaki, N.M. Johnson and B.L. Sopori, (Mater. Res. Soc. Proc. 378, Pittsburgh, PA, 1995), Materials Research Proc. Vol. 378, 547-65.

  3. A. Jayaraman, Rev. Mod. Phys. 55, 65 (1983).

    Article  CAS  Google Scholar 

  4. N.M. Johnson, W. Shan, and P.Y. Yu, Semicond. Sci. Technol. 4, 1036 (1989).

    Article  CAS  Google Scholar 

  5. L. Hsu, S. Zehender, E. Bauser, and E.E. Haller, Phys. Rev. B 55, 10515 (1997).

    Article  CAS  Google Scholar 

  6. E. E. Haller, Leonardo Hsu, and J. A. Wolk, Proc. 7thIntl. Conf. on High Pressure Semiconductor Physics. HPSP-VII, Schwäbisch-Gmünd, July 28-31, 1996, in physica stat. solidi (b) 198, 153 (1996).

    Article  CAS  Google Scholar 

  7. J.A. Wolk, M.B. Krüger, J.N. Heyman, W. Walukiewicz, R. Jeanloz, and E.E. Haller, Phys. Rev. Lett. 66, 774 (1991).

    Article  CAS  Google Scholar 

  8. J.A. Wolk, W. Walukiewicz, M. L. W. Thewalt and E. E. Haller, Phys. Rev. Lett. 68, 3619 (1992).

    Article  CAS  Google Scholar 

  9. A.S. Barker Jr and A.J. Sievers, Rev. Modern Physics 47, Suppl. 2 (1975), and W.G. Spitzer, Festkörperprobleme XI. (Advances in Solid State Physics), edited by O. Madelung, (Pergamon, Vieweg, Germany, 1971).

  10. N.M. Haegel, Performance and Materials Aspects of Ge:Be and Ge:Ge Photoconductors for Far Infrared Detectors. MS thesis, UC Berkeley and Lawrence Berkeley Laboratory, Report #16694 (1983).

    Google Scholar 

  11. L. Merill and W. A. Bassett, Rev. Sci. Instr. 45, 290 (1974).

    Article  Google Scholar 

  12. E. Sterer, M.P. Pasternak, and R.D. Taylor, Rev. Sci. Instr. 61, 1117 (1990).

    Article  CAS  Google Scholar 

  13. D. Schiferl, D.T. Cromer, and R.L. Mills, High Temp. High Pressures 10, 493 (1978).

    CAS  Google Scholar 

  14. M.D. McCluskey, L. Hsu, L. Wang, and E.E. Haller, Phys. Rev. B 54, 8962 (1996).

    Article  CAS  Google Scholar 

  15. E. E. Haller, "Hydrogen in Crystalline Semiconductors," Semicond. Sci. Technol. 6, 73 (1991).

    Article  CAS  Google Scholar 

  16. B. Pajot, R.C. Newman, R. Murray, A. Jalil, J. Chevallier, and R. Azoulay, Phys. Rev. B 37, 4188 (1988).

    Article  CAS  Google Scholar 

  17. M.D. McCluskey, E.E. Haller, J. Walker, N.M. Johnson, J. Vetterhöffer, J. Weber, T.B. Joyce, and R.C. Newman, Phys. Rev. B 56, 6404 (1997).

    Article  CAS  Google Scholar 

  18. B.R. Davidson, R.C. Newman, T.J. Bullough, and T.B. Joyce, Phys. Rev. B 48, 17106 (1993).

    Article  CAS  Google Scholar 

  19. J. Vetterhöffer, J.H. Svensson, J. Weber, A.W.R. Leitch, and J.R. Botha, Phys. Rev. B 50, 2708 (1994).

    Article  Google Scholar 

  20. M.D. McCluskey, E.E. Haller, W. Walukiewicz, and P. Becla, Phys. Rev. B 53, 16297 (1996).

    Article  CAS  Google Scholar 

  21. M.D. McCluskey, E.E. Haller, W. Walukiewicz, and P. Becla, accepted for publication in Solid State Commun.

  22. P. Giannozzi, S. de Gironcoli, P. Pavone, and S. Baroni, Phys. Rev. B 43, 7231 (1991).

    Article  CAS  Google Scholar 

  23. S. Ves, K. Strössner, and M. Cardona, Solid State Commua 57, 483 (1986).

    Article  CAS  Google Scholar 

  24. B. Pajot, in Semiconductors and Semimetals. edited by F. Shimura, Vol. 42 (Academic Press, 1994), Ch. 6.

  25. Emilio Artacho, Fëlix Induräin, Bernard Pajot, Rafael Ramirez, Carlos P. Herrero, Ludmila I. Khirunenko, Kohei M. Itoh and Eugene E. Haller, Phys. Rev. B 56, 3820 (1997).

    Article  CAS  Google Scholar 

  26. L. Jastrzebski, P. Zanzucchi, D. Thebault, and J. Lagowski, J. Electrochem. Soc. 129, 1638 (1982).

    Article  CAS  Google Scholar 

  27. B. Pajot, H.J. Stein, B. Cales, and C. Naud, J. Electrochem. Soc. 132, 3034 (1985).

    Article  CAS  Google Scholar 

  28. H.J. Hrostowski and R.H. Kaiser, Phys. Rev. 10, 966 (1957).

    Article  Google Scholar 

  29. G. Herzberg, Infrared and Raman Spectra of Diatomic Molecules (D. Van Nostrand Company, 1945), 104.

  30. D.R. Bosomworth, W. Hayes, A.R.L. Spray, and G.D. Watkins, Proc. Roy. Soc. A 317, 133 (1970).

    CAS  Google Scholar 

  31. H. Yamada-Kaneta, C. Kaneta, and T. Ogawa, Phys. Rev. B 42, 9650 (1990).

    Article  CAS  Google Scholar 

  32. M. Gienger, M. Glaser, and K. Laβmann, Solid State Commua 86, 285 (1993).

    Article  CAS  Google Scholar 

  33. A.J. Mayur, M.D. Sciacca, M.K. Udo, A.K. Ramdas, K. Itoh, J. Wolk, and E.E. Haller, Phys. Rev. B 49, 16293 (1994).

    Article  CAS  Google Scholar 

  34. M.D. McCluskey and E.E. Haller, Phys. Rev. B 56, 9520.

  35. C. Wetzel, W. Walukiewicz, E.E. Haller, J. Ager III, I. Grzegory, S. Porowski, and T. Suski, Phys. Rev. B 53, 1322 (1996).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the Director, Office of Energy Research, Office of Basic Energy Sciences, Materials Sciences Division of the U.S. Department of Energy under Contract No. DE-AC03-76SF00098 and in part by USNSF grant DMR-94 17763.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Haller, E.E., McCluskey, M.D. Infrared Optical Studies of Semiconductors at Large Hydrostatic Pressures. MRS Online Proceedings Library 499, 371–380 (1997). https://doi.org/10.1557/PROC-499-371

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/PROC-499-371

Navigation