Skip to main content
Log in

Sub-200 Oe Giant Magnetoresistance in Manganite Tunnel Junctions

  • Published:
MRS Online Proceedings Library Aims and scope

Abstract

Metallic manganite oxides, La1-xDxMnO3 (D=Sr, Ca, etc.), display “colossal” magnetoresistance (CMR) near their magnetic phase transition temperatures (Tc) when subject to a Tesla-scale magnetic field. This phenomenal effect is the result of the strong interplay inherent in this class of materials among electronic structure, magnetic ordering, and lattice dynamics. Though fundamentally interesting, the CMR effect achieved only at large fields poses severe technological challenges to potential applications in magnetoelectronic devices, where low field sensitivity is crucial. Among the objectives of our research effort involving manganite materials is to reduce the field scale of MR by designing and fabricating tunnel junctions and other structures rich in magnetic domain walls. The junction electrodes were made of doped manganite epitaxial films, and the insulating barrier of SrTiO3. The interfacial expitaxy has been imaged by using high-resolution transmission electron microscopy (TEM). We have used self-aligned lithographic process to pattern the junctions to micron scale in size. Large MR values close to 250% at low fields of a few tens of Oe have been observed. The mechanism of the spin-dependent transport is due to the spin-polarized tunneling between the half-metallic electrodes, in which the spins of the conduction electrons are nearly fully polarized. We will present results of field and temperature dependence of MR in these structures and discuss the electronic structure of the manganite inferred from tunneling measurement. Results of large MR at low fields due to the grain-boundary effect will also be presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. N. Babich, J. M Broto, A. Fert, F. Nguyen Van Dau, F. Petroff, P. Eitenne, G. Creuzet, A. Friederich, and J. Chazelas, Phys. Rev. Lett. 61, 2472 (1988).

    Article  Google Scholar 

  2. S. S. P. Parkin, R. Bhadra, and K. P. Roche, Phys. Rev. Lett. 66, 2152 (1991).

    Article  CAS  Google Scholar 

  3. A. E. Berkowitz, J. R. Mitchell, M. J. Carey, A. P. Young, S. Zhang, F. E. Spada, F. T. Parker, A. Hutten, and G. Thomas, Phys. Rev. Lett. 68, 3745 (1992).

    Article  CAS  Google Scholar 

  4. J. Q. Xiao, J. S. Jiang, and C. L. Chien, Phys. Rev. Lett. 68, 3749 (1992)

    Article  CAS  Google Scholar 

  5. R. von Helmolt, J. Wecker, B. Holzapfel, L. Shultz, and K. Samwer, Phys. Rev. Lett. 71, 2331 (1993).

    Article  CAS  Google Scholar 

  6. S. Jin, T. H. Tiefel, M. McCormack, R. A. Fastnacht, R. Ramesh, and L. H. Chen, Science, 264, 413 (1994).

    Article  CAS  Google Scholar 

  7. G. Q. Gong, C. L. Canedy, Gang Xiao, J. Z. Sun, A. Gupta, and W. J. Gallagher, Appl. Phys. Lett. 67, 1783 (1995).

    Article  CAS  Google Scholar 

  8. Gang Xiao, G. Q. Gong, C. L. Canedy, E. J. McNiff, Jr., and A. Gupta, J. Appl. Phys.81, 5324 (1997).

    Article  CAS  Google Scholar 

  9. T. Miyazaki and N. Tezuka, J. Magn. Magn. Mater. 139, L231 (1995).

    Article  CAS  Google Scholar 

  10. J. S. Moddera, L. R. Kinder, T. M. Wong, and R. Meservey, Phys. Rev. Lett, 74, 3272 (1995).

    Google Scholar 

  11. W. J. Gallagher, S. S. P. Parkin, Yu Lu, X. P. Bian, A. Marley, K. P. Roche, R. A. Altman, S. A. Rishton, C. Jahnes, T. M. Shaw, and Gang Xiao, J. Appl. Phys. 81, 3741 (1997); Yu Lu, X. W. Li G. Q. Gong, Gang Xiao, A. Gupta, P. Lecoeur, J. Z. Sun, Y. Y. Wang, and V. P. Dravid, Phys. Rev. B 54, R8357 (1996); J. Z. Sun, W. J. Gallagher, P. R. Duncombe, L. Krusin-Elbaum, R. A. Altman, A. Gupta, Yu Lu, G. Q. Gong, and Gang Xiao, Appl. Phys. Lett. 69, 3266 (1996).

    Article  CAS  Google Scholar 

  12. Yu Lu, R. A. Altman, A. Marley, S. A. Rishton, P. L. Trouilloud, Gang Xiao, W. J. Gallagher, and S. S. P. Parkin, Appl. Phys. Lett. 70, 2610 (1997).

    Article  CAS  Google Scholar 

  13. M. Julliere, Phys. Lett. A 54A, 225 (1975).

    Article  CAS  Google Scholar 

  14. R. Meservey and P. M. Tedrow, Phys. Rep. 239, 174 (1994).

    Google Scholar 

  15. C. Zener, Phys. Rev. 82, 403 (1951).

    Article  CAS  Google Scholar 

  16. P. W. Anderson and H. Hasegawa, Phys. Rev. 100, 675 (1955).

    Article  CAS  Google Scholar 

  17. P.-G. de Gennes, Phys. Rev. 118, 141 (1996).

    Article  Google Scholar 

  18. A. Gupta, G. Q. Gong, Gang Xiao, P. R. Duncombe, P. Lecoeur, P. Trouilloud, Y. Y. Wang, V. P. Dravid, and J. Z. Sun, Phys. Rev. 54, R15629 (1996).

    Article  CAS  Google Scholar 

  19. X. W. Li, A. Gupta, Gang Xiao, and G. Q. Gong, Appl. Phys. Lett. 71, 1124 (1997).

    Article  CAS  Google Scholar 

Download references

Acknowledgement

We wish to thank T. R. McGuire, Yu Lu, J. Slonczeski, and W. J. Gallagher for discussions. We are grateful to P. R. Duncombe for preparing targets, V. P. Dravid and Y. Y. Wang for TEM measurements on some of our samples. This work was supported partially by National Science Foundation Grants Nos. DMR 9414160 and DMR 9701578 and partially by Defense Advanced Research Projects Agency.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xiao, G., Gupta, A., Li, X.W. et al. Sub-200 Oe Giant Magnetoresistance in Manganite Tunnel Junctions. MRS Online Proceedings Library 494, 221–230 (1997). https://doi.org/10.1557/PROC-494-221

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/PROC-494-221

Navigation