Skip to main content
Log in

Comparison of the Structure of Grain Boundaries in Silicon and Diamond by Molecular-Dynamics Simulations

  • Published:
MRS Online Proceedings Library Aims and scope

Abstract

Molecular-dynamics simulations were used to synthesize nanocrystalline silicon with a grain size of up to 75Å by crystallization of randomly misoriented crystalline seeds from the melt. The structures of the highly-constrained interfaces in the nanocrystal were found to be essentially indistinguishable from those of high-energy bicrystalline grain boundaries (GBs) and similar to the structure of amorphous silicon. Despite disorder, these GBs exhibit predominantly four-coordinated (sp3-like) atoms and therefore have very few dangling bonds. By contrast, the majority of the atoms in high-energy bicrystalline GBs in diamond are three-coordinated (sp2-like). Despite the large fraction of three-coordinated GB carbon atoms, they are rather poorly connected amongst themselves, thus likely preventing any type of graphite-like electrical conduction through the GBs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. See, for example, papers in Polycrystalline Semiconductors, edited by H.-J. Moller, H. P. Strunk and J. H. Werner, Springer Proceedings in Physics Vol. 35 (Springer, Berlin, 1989); Polycrystalline Semiconductors II, edited by J. H. Werner and H. P. Strunk, Springer Proceedings in Physics Vol. 54 (Springer, Berlin, 1991)}.

  2. F. H. Stillinger and T. A. Weber, Phys. Rev. B 31, 5262 (1985).

    Article  CAS  Google Scholar 

  3. P. Keblinski, S. R. Phillpot, D. Wolf and H. Gleiter, Acta. Mat. 45, 987 (1997); Phys. Lett. A 226, 205 (1997).

    Article  CAS  Google Scholar 

  4. P. Keblinski, S. R. Phillpot, D. Wolf and H. Gleiter, Phys. Rev. Lett.77, 2965 (1996); J. Amer. Ceram. Soc. 80 717 (1997).

    Article  CAS  Google Scholar 

  5. A. Bourret and J. J. Bacmann, Surface Science 162, 495 (1985).

    Article  CAS  Google Scholar 

  6. See, for example, D. Wolf and K. L. Merkle in Materials Interfaces: Atomic-Level Structure and Properties, edited by D. Wolf and S. Yip (Chapman and Hall, 1992), p. 87 ff.

  7. S. R. Phillpot and D. Wolf, Phil. Mag. A 60, 545 (1989).

    Article  CAS  Google Scholar 

  8. W. D. Luedtke and U. Landman, Phys. Rev. B 37, 4656 (1988);{ibid. W. D. Luedtke and U. Landman, Phys. Rev. B 40, 1164 (1989)}.

    Article  CAS  Google Scholar 

  9. J. Tersoff, Phys. Rev. B 38, 9902 (1988).

    Article  CAS  Google Scholar 

  10. J. Tersoff, Phys. Rev. Lett. 61, 2879 (1988).

    Article  CAS  Google Scholar 

  11. N. M. Hwang, J. H. Hahn and D. Y. Yoon, J. Cryst. Growth 160, 87 (1996);N. M. Hwang and D. Y. Yoon, J. Cryst. Growth. 160, 98 (1996).

    Article  CAS  Google Scholar 

  12. R. Csencsits, C. D. Zuiker, D. M. Gruen and A. R. Krauss, Solid State Phen. 51-52, 261 (1996).

    Article  CAS  Google Scholar 

Download references

Acknowledgement

PK gratefully acknowledges support from the A. v. Humboldt Foundation. SRP and DW are supported by the US Department of Energy, BES-Materials Science under Contract No. W-3I-109-Eng-38.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Keblinski, P., Phillpot, S.R., Wolf, D. et al. Comparison of the Structure of Grain Boundaries in Silicon and Diamond by Molecular-Dynamics Simulations. MRS Online Proceedings Library 472, 15–20 (1997). https://doi.org/10.1557/PROC-472-15

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/PROC-472-15

Navigation