Skip to main content
Log in

Interatomic Potential for Condensed Phases and Bulk Defects in Silicon

  • Published:
MRS Online Proceedings Library Aims and scope

Abstract

We present a new empirical potential for silicon which is a considerable improvement over existing models in describing structures away from equilibrium, such as bulk defects. The interatomic interaction is described by two- and three-body terms using theoretically motivated functional forms which emphasize chemical and physical trends. The numerical parameters in the functional forms are obtained by fitting to several ab initio calculations, which include bulk phases and defect structures. The model is tested to core properties of partial dislocations in the glide set {111}, which are not included in the database, and gives results in very good agreement with ab initio calculations. This is the only known potential capable of describing the structure of both the 30° and 90°partial dislocations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. C. Payne, M. P. Teter, D. C. Allan, T. A. Arias and J. D. Joannopoulos, Rev. Mod. Phys. 64, 1045 (1992).

    Article  CAS  Google Scholar 

  2. F. H. Stillinger and T. A. Weber, Phys. Rev. B 31, 5262 (1985).

    Article  CAS  Google Scholar 

  3. J. Tersoff, Phys. Rev. Lett. 56, 632 (1986).

    Article  CAS  Google Scholar 

  4. J. Tersoff, Phys. Rev. B 37, 6991 (1988).

    Article  CAS  Google Scholar 

  5. J. Tersoff, Phys. Rev. B 38, 9902 (1988).

    Article  CAS  Google Scholar 

  6. H. Balamane, T. Halicioglu, and W. A. Tiller, Phys. Rev. B 46, 2250 (1992).

    Article  CAS  Google Scholar 

  7. E. Kaxiras and K. C. Pandey, Phys. Rev. B 38, 12736 (1988).

    Article  CAS  Google Scholar 

  8. A. D. Mistriotis, N. Flytzanis, and S. C. Farantos, Phys. Rev. B 39, 1212 (1989).

    Article  CAS  Google Scholar 

  9. B. C. Bolding and H. C. Andersen, Phys. Rev. B 41, 10568 (1990).

    Article  CAS  Google Scholar 

  10. J. R. ChelikowskyJ. C. Phillips, M. Kamal and M. Strauss, Phys. Rev. Lett. 62, 292 (1989); J. R. Chelikowsky and J. C. Phillips, Phys. Rev. B 41, 5735 (1990); J. R. Chelikowsky, K. M. Glassford and J. C. Phillips, Phys. Rev. B 44 1538 (dy1991).

    Article  Google Scholar 

  11. M. Z. Bazant and E. Kaxiras, Phys. Rev. Lett. 77, 4370 (1996).

    Article  CAS  Google Scholar 

  12. M. Z. Bazant, E. Kaxiras and J. F. Justo (to be published).

  13. A. E. Carlssom, P. A. Fedders, and C. W. Myles, Phys. Rev. B 41, 1247 (1990).

    Article  Google Scholar 

  14. S. Ismail-Beigi and E. Kaxiras (private communication).

  15. The fitting database consists of DFT/LDA total energies computed using a plane wave basis with at least a 12 Ry cutoff. Supercells for the point defect calculations included 53-55 atoms, so that long range elastic relaxation energies, on the order of 0.01 eV [16], are ignored.

  16. K. C. Pandey, Phys. Rev. Lett. 57, 2287 (1986).

    Article  CAS  Google Scholar 

  17. Y. Bar-Yam and J. D. Joannopolous, Phys. Rev. Lett. 52, 1129 (1984).

    Article  CAS  Google Scholar 

  18. P.J. Kelly and R. Car, Phys. Rev. B 45, 6543 (1992).

    Article  CAS  Google Scholar 

  19. H. Seong and L. J. Lewis, Phys. Rev. B 53, 9791 (1996).

    Article  CAS  Google Scholar 

  20. E. Kaxiras and M. S. Duesbery, Phys. Rev. Lett. 70, 3752 (1993).

    Article  CAS  Google Scholar 

  21. G. Simmons and H. Wang, Single Crystal Elastic Constants and Calculated Aggregate Properties: A Handbook (MIT, Cambridge, 1971).

    Google Scholar 

  22. D. C Wallace, Thermodynamics of Crystals (Wiley, New York, 1972).

    Book  Google Scholar 

  23. J. Wang, S. Yip, S. R. Phillpot, and D. Wolf, Phys. Rev. Lett. 71, 4182 (1993).

    Article  CAS  Google Scholar 

  24. N. Bernstein and E. Kaxiras, submitted to Phys. Rev. B.

  25. V. V. Bulatov, S. Yip, and A. S. Argon, Phil. Mag. A 72, 453 (1995).

    Article  CAS  Google Scholar 

  26. K.C. Pandey and E. Kaxiras, Phys. Rev. Lett. 66, 915 (1991); E. Kaxiras and K. C. Pandey, Phys. Rev. B 47, 1659 (1993).

    Article  CAS  Google Scholar 

  27. U. Trinczek and H. Teichler, Phys. Sta. Sol. A 137, 577 (1993).

    Article  CAS  Google Scholar 

  28. A. S. Nandedkar and J. Narayan, Phil. Mag. A 61, 873 (1990).

    Article  CAS  Google Scholar 

  29. M. S. Duesbery, B. Joos, D. J. Michel, Phys. Rev. B 43, 5143 (1991).

    Article  CAS  Google Scholar 

  30. H. Teichler, in Polycrystalline Semiconductors, ed. J. H. Werner, H. J. Moller, and H. P. Strunk, Vol. 35 (Springer, New York, 1989), p. 25.

    Article  Google Scholar 

  31. J. R. K. Bigger, D.A. Mclnnes, A.P Sutton, M. C Payne, I. Stich, R. D. King-Smith, D. M. Bird, and L. J. Clarke, Phys. Rev. Lett.69, 2224 (1992).

    Article  CAS  Google Scholar 

  32. T. A. Arias, V. V. Bulatov, S. Yip, and A. S. Argon, (unpublished).

  33. R. W. Nunes, J. Bennetto, and D. Vanderbilt, Phys. Rev. Lett. 77, 1516 (1996).

    Article  CAS  Google Scholar 

Download references

Acknowledgement

Partial support was provided to JFJ, VVB, and SY by the MRSEC Program of the National Science Foundation under award number DMR 94-00334. JFJ acknowledges partial support from Brazilian Agency CNPq. Partial support was provided to MZB by a Computational Science Graduate Fellowship from the Office of Scientific Computing of the U.S. Department of Energy.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Justo, J.F., Bazant, M.Z., Kaxiras, E. et al. Interatomic Potential for Condensed Phases and Bulk Defects in Silicon. MRS Online Proceedings Library 469, 217–227 (1997). https://doi.org/10.1557/PROC-469-217

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/PROC-469-217

Navigation