Skip to main content
Log in

Evolution of Morphology During Etching of Si

  • Published:
MRS Online Proceedings Library Aims and scope

Abstract

The step morphology of clean Si surfaces has been studied under conditions of thermal etching in the temperature range 950–1250°C. Kinetic-bunching of steps is caused by direct current in the step-down direction around 950°C. By comparing the rate of thermal decay of these structures with and without direct current, the electromigration force causing this step bunching is estimated to be due to an effective charge of less than or approximately 0.01 electron units. Around 1150°C, step-bunching is caused by direct current in the step-up direction. By analysis of the patterns of step structure, the effective charge of the driving force is found to be approximately -0.1 electron units. Oxygen-induced etching of Si(001) and Si(111) has been studied in the temperature range of 700–900 °C, and at a pressure of 5 x 107 torr, conditions under which the surface is etched by the desorption of SiO. On Si(001), the original narrow distribution of double-layer height steps is preserved during the oxygen-etching process. On Si(111), the original narrow distribution of mixed single- and triple-layer height steps changes dramatically during oxygen-etching, leaving wide terraces of flat (111) surface separated by regions of high step density. At low etching temperatures (700°C), the steps remain straight within the step bunches and retain their distinct character as single- and triple-height steps. However, following higher temperature etching, the steps begin to merge into facets in the vicinity of defect structures. Following etching at the highest temperatures studied (815 and 830°C), the pinning action of the defect structures becomes apparent, and the pinned step-bunches become identifiable as (113) facets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. K. Burton, N. Cabrera and F. C. Frank, Phil. Trans. Roy. Soc. (London) 243A, 299 (1951).

    Google Scholar 

  2. J. A. Venables, Surf. Sci. 299/300, 798 (1994).

    Article  Google Scholar 

  3. F. C. Frank, in Growth and Perfection of Crystals, R. H. Doremus, et al., Eds. (John Wiley and Sons, New York, 1958).

  4. D. Kandel and J. D. Weeks, Phys. Rev. B49, 5554 (1994).

    Article  Google Scholar 

  5. R. L. Schwoebel and E. J. Shipsey, J. Appl. Phys. 37, 3682 (1966).

    Article  CAS  Google Scholar 

  6. S. Stoyanov, Jpn. J. Appl. Phys. 30, 1 (1991).

    Article  CAS  Google Scholar 

  7. S. S. Stoyanov, M. Ichikawa and T. Doi, Jpn. J. Appl. Phys., Pt. 1 32, 2047 (1993).

    Article  CAS  Google Scholar 

  8. A. V. Latyshev, A. L. Aseev, A. B. Krasilnikov, S. I. Stenin, Surf. Sci. 213, 157 (1989).

    Article  CAS  Google Scholar 

  9. C. Alfonso, J. C. Heyraud and J. J. Métois, Surf. Sci. 291, L745 (1993).

    Article  CAS  Google Scholar 

  10. R. J. Phaneuf, E. D. Williams and N. C. Bartelt, Phys. Rev. B38, 1984 (1988).

    Article  Google Scholar 

  11. R. J. Phaneuf and E. D. Williams, Phys. Rev. Lett. 58, 2563 (1987).

    Article  CAS  Google Scholar 

  12. R. J. Phaneuf and E. D. Williams, Phys. Rev. B 41, 2991 (1990).

    Article  CAS  Google Scholar 

  13. A. V. Latyshev, et al., Phys. Stat. Sol. A113, 421 (1989).

    Article  Google Scholar 

  14. Y. Homma, R. McClelland and H. Hibino, Jpn. J. Applied Physics 29, 2254 (1990).

    Article  Google Scholar 

  15. Y.-N. Yang, E. S. Fu and E. D. Williams, Surf. Sci. 356, 101 (1996).

    Article  CAS  Google Scholar 

  16. F. W. Smith and G. Ghidini, J. Electrochemi. Soc 129, 1300(1982).

    Article  CAS  Google Scholar 

  17. T. Engel, Surf. Sci. Rep. 18, 91 (1993).

    Article  CAS  Google Scholar 

  18. F. Donig, et al., J. Vacuum Sci. Technol. B11, 1955 (1993).

    Article  Google Scholar 

  19. J. V. Seiple and J. P. Pelz, J. Vac. Sci. Technol. A {vd13 (3)}, 772 (1995).

    Google Scholar 

  20. F. G. Alien, J. Appl. Phys. 28, 1510 (1957).

    Article  Google Scholar 

  21. R. J. Phaneuf and E. D. Williams, Surf. Sci. 195, 330(1988).

    Article  CAS  Google Scholar 

  22. R. Kaplan, Surf. Sci. 93, 145 (1980).

    Article  CAS  Google Scholar 

  23. J. Wei, er al., Phys. Rev. Lett. 69, 3885 (1992).

    Google Scholar 

  24. C. Alfonso, J. M. Bermond, J. C. Heyraud and J. J. Metois, Surf. Sci. 262, 371 (1992).

    Article  CAS  Google Scholar 

  25. D.-J. Liu, E. S. Fu, M. D. Johnson, J. D. Weeks and E. D. Williams, J. Vacuum Sci. Technol. B14, 2799 (1996).

    Article  Google Scholar 

  26. E. Fu, et al., Phys. Rev. Lett. 77, 1095 (1996).

    Article  Google Scholar 

  27. E. S. Fu, D.-J. Liu, M. D. Johnson, J. D. Weeks and E. D. Williams, submitted (1996).

  28. E. D. Williams, E. Fu, Y.-N. Yang, D. Kandel, J. D. Weeks, Surf. Sci. 336, L746 (1995).

    Article  CAS  Google Scholar 

  29. D. Kandel and J. D. Weeks, Phys. Rev. Lett. 74, 3632 (1995).

    Article  CAS  Google Scholar 

  30. N. C. Bartelt, et al., Phys. Rev. B48, 15453 (1993).

    Article  Google Scholar 

  31. Y.-N. Yang, et al., Phys. Rev. Lett. 64, 2410 (1990).

    Article  CAS  Google Scholar 

  32. Y.-N. Yang and E. D. Williams, J. Vacuum Sci. Technol. A8, 2481 (1990).

    Article  Google Scholar 

  33. J. L. Goldberg, et al., J. Vacuum Sci. Technol. A9, 1868 (1991).

    Article  Google Scholar 

  34. J. Wei, X.-S. Wang, N. C. Bartelt, E. D. Williams and R. T. Tung, J. Chem. Phys. 94, 8384(1991).

    Article  CAS  Google Scholar 

  35. J. S. Ozcomert, W. W. Pai, N. C. Bartelt, J. E. Reutt-Robey, Surf. Sci. 293, 183 (1993).

    Article  CAS  Google Scholar 

  36. M. Mundschau, E. Bauer, W. Telieps and W. Swiech, Phil. Mag. A61, 257 (1990).

    Article  Google Scholar 

  37. D. Kandel and E. Kaxiras, Phys. Rev. Lett. 76, 1114 (1996).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work has been supported in part by the Office of Naval Research (BL, ESF, EDW), and in part by the NSF-FAW (EDW).

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Williams, E.D., Fu, E.S. & Li, B. Evolution of Morphology During Etching of Si. MRS Online Proceedings Library 466, 157–166 (1996). https://doi.org/10.1557/PROC-466-157

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/PROC-466-157

Navigation