Skip to main content
Log in

Local Viscoelasticity of Biopolymer Solutions

  • Published:
MRS Online Proceedings Library Aims and scope

Abstract

We describe a new, high-resolution technique for determining the local viscoelastic response of polymer gels on a micrometer scale. This is done by monitoring thermal fluctuations of embedded probe particles. We derive the relationship between the amplitude of fluctuations and the low-frequency storage modulus G′, as well as the relationship between the fluctuation power spectrum, measured between 0.1 Hz and 25kHz, and the complex shear modulus G(ω). For both, semiflexible F-actin solutions and flexible polyacrylamide (PAAm) gels we observe high-frequency power-law dependence in the spectra, which reflects the behavior of the shear modulus. However, we observe distinctly different scaling exponents for G(ω) in F-actin and PAAm gels — presumably due to the semiflexible nature of the actin filaments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. T.P. Stessei, Sci Am 271, 54–5, 58-63 (1994).

    Google Scholar 

  2. J. Kas, H. Strey, J.X. Tang et al., Biophysical Journal 70, 609 (1996).

    Article  CAS  Google Scholar 

  3. O. Muller, et al., Macromolecules 24, 3111 (1991); R. Ruddies, et al, Eur Biophys J 22, 309 (1993).

    Article  Google Scholar 

  4. P.A. Janmey, S. Hvidt, J. Kas et al., J Biol Chem 269, 32503 (1994).

    CAS  Google Scholar 

  5. P.A. Janmey, et al., Biochemistry 27, 8218 (1988); P.A. Janmey, J Biochem and Biophys Meth 22, 41 (1991).

    Article  CAS  Google Scholar 

  6. F.C. MacKintosh, J. Kas, and P.A. Janmey, Physical Review Letters 75, 4425 (1995).

    Article  CAS  Google Scholar 

  7. T.D. Pollard, I. Goldberg, and W.H. Schwarz, J Biol Chem 267, 20339 (1992); D.H. Wachsstock, W.H. Schwartz, and T.D. Pollard, Biophys J 65, 205 (1993); 66, 801 (1994); M. Sato, et al., J Biol Chem 260, 8585 (1985); K.S. Zaner and J.H. Hartwig, J Biol Chem 263, 4532 (1988); J. Newman, et al, Biophys 64, 1559 (1993).

    CAS  Google Scholar 

  8. F. Ziemann, J. Radier, and E. Sackmann, Biophys J 66, 2210 (1994).

    Article  CAS  Google Scholar 

  9. F.G. Schmidt, F. Ziemann, and E. Sackmann, Eur Biophys J 24, 348 (1996).

    Article  CAS  Google Scholar 

  10. F. Amblard, et al., Physical Review Letters 77, 4470 (1996).

    Article  CAS  Google Scholar 

  11. T.G. Mason and D.A. Weitz, Physical Review Letters 74, 1250 (1995).

    Article  CAS  Google Scholar 

  12. L.D. Landau and E.M. Lifshitz, Fluid mechanics (Pergamon Press, Reading, MA, 1959).

    Google Scholar 

  13. The shear stress σ and displacement field u in a viscoelastic medium are related in the same way as σ and the velocity field in a viscous fluid, provided that both are incompressible.

  14. L.D. Landau and E.M. Lifshitz, Theory of elasticity, 2d ed. (Pergamon Press, New York, 1970).

    Google Scholar 

  15. B. Schnurr, et al., to be published.

  16. F. Brochard and P.G. de Gennes, Macromolecules 10, 1157 (1977).

    Article  CAS  Google Scholar 

  17. S.T. Milner, Physical Review E 48, 3674 (1993).

    Article  CAS  Google Scholar 

  18. L.D. Landau, E.M. Lifshitz, and L.P. Pitaevskii, Statistical physics (Pergamon Press, New York, 1980).

    Google Scholar 

  19. M. Doi and S.F. Edwards, The Theory of Polymer Dynamics (Clarendon Press, Oxford, 1988).

    Google Scholar 

  20. J.D. Pardee and J.A. Spudich, in Structural and Contractile Proteins (PartB: The Contractile Apparatus and the Cy to skeleton), ed. by D W Frederiksen and L W Cunningham (Academic Press, San Diego, 1982).

  21. Bio-Rad Laboratories, US/EG Bulletin 1156.

  22. W. Denk and W.W. Webb, Applied Optics 29, 2382 (1990).

    Article  CAS  Google Scholar 

  23. K. Svoboda, C.F. Schmidt, B.J. Schnapp et al., Nature 365, 721 (1993).

    Article  CAS  Google Scholar 

  24. F. Gittes and C.F. Schmidt, in Laser tweezers in cell biology, ed. M. P. Sheetz (Academic Press, San Diego, 1997).

  25. C.F. Schmidt, et al., Macromolecules 22, 3638 (1989).

    Article  CAS  Google Scholar 

  26. In analogy with the Rouse model, one might have expected a scaling Gs(ω)), G′(ω) ∝ ω1/4 for semiflexible polymers. This would result in a ω-5/4 dependence of the power spectrum

  27. J.S. Fawcett and C.J.O.R. Morris, Separation Science 1, 9 (1966).

    Article  CAS  Google Scholar 

  28. Y. Cohen, et ai, Journal of Polymer Science, Part B (Polymer Physics) 30, 1055 (1992).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schnurr, B., Gittes, F., Olmsted, P.D. et al. Local Viscoelasticity of Biopolymer Solutions. MRS Online Proceedings Library 463, 15–20 (1996). https://doi.org/10.1557/PROC-463-15

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/PROC-463-15

Navigation