Skip to main content
Log in

Enhancement of Ion Mobility in Aluminosilicate-Polyphosphazene Nanocomposites

  • Published:
MRS Online Proceedings Library Aims and scope

Abstract

Nanocomposites of poly(bis-(2(2-memoxyethoxy)ethoxy)phosphazene) (MEEP) or cryptand[2.2.2] with the aluminosilicate Na-montmorillonite (NaMont) were studied to develop new solid electrolytes with high conductivity and a unity cation transport number. An aluminosilicate was chosen because the low basicity of the Si-0-Al framework should minimize ion pairing. To further reduce ion pairing, solvating molecules or polymers such as cryptand[2.2.2] or MEEP were introduced into the aluminosilicate. When compared to pristine Na-montmorillonite, impedance spectroscopy indicates an increase in conductivity of up to 100 for MEEP-NaMont intercalates, and of 50 for cryptand[2.2.2]NaMont intercalates. The MEEPA NaMont intercalate exhibits high ionic conductivity anisotropy with respect to the montmorillonite layers (σpara.σperp. = 100), which is consistent with increased tortuosity of the cation diffusion path perpendicular to the structure layers. The temperature dependance of the conductivity suggests that cation transport is coupled to segmental motion of the intercalated polymer, as observed previously for simple polymer-salt complexes. Nanocomposites of solvating polymers or molecules with aluminosilicates provide a promising new direction in solid-state electrolytes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ratner, M. A.; Shriver, D. F. Chem. Rev. 1988, 88, 109.

    Google Scholar 

  2. MacCallum, J. R.; Vincent, C. A. Polymer Electrolyte Reviews; Elsevier: London, 1987, 1989; Vols. 1,2.

  3. Tonge, J. S.; Shriver, D. F. In Polymers for Electronic Applications; Lai, J. H., Ed.; CRC Press: Boca Raton, FL, 1989; pp.194–200.

  4. Wang, W. L.; Lin, F. L. Solid St. Ionics, 1990, 40/41, 125.

  5. Fan, Y.Q. Solid St. Ionics, 1988, 28-30, 1596.

    Article  Google Scholar 

  6. Slade, R.; Barker, J.; Hirst, P. Solid St. Ionics 1987, 24, 289.

    Article  CAS  Google Scholar 

  7. Hutchison, J. C.; Bissessur, R.; Shriver, D. F. In Molecularly Designed Nanostructured Materials, Gan-Moog Chow, ed., ACS Symposium Series,622, 263–272.

  8. Hutchison, J. C.; Bissessur, R.; Shriver, D. F.; Chem. Mater., 1996, 8, 1597–1599.

    Article  CAS  Google Scholar 

  9. Ruiz-Hitzky, E.; Aranda, P.; Casal, B.; Galvin, J. Adv. Mater. 1995, 7, 180.

  10. Vaia, R.; Vasudevan, S.; Wlodzimierz, K.; Scanlon, L.; Giannelis, E. Adv. Mater. 1995, 7, 154.

    Google Scholar 

  11. Wu, J.; Lerner, M. Chem. Mater. 1993, 5, 835.

    Article  CAS  Google Scholar 

  12. Aranda, P. Adv. Mater. 1993, 5, 334.

    Article  Google Scholar 

  13. Aranda, P.; Ruiz-Hitzky, E. Chem. Mater. 1992, 4, 1395–1403.

    Article  CAS  Google Scholar 

  14. Aranda, P.; Galvan, J.; Casal, B.; Ruiz-Hitzky, E. Electrochem. Acta 1992, 37, 1573.

    Article  CAS  Google Scholar 

  15. Ruiz-Hitzky, E.; Aranda, P Adv. Mater. 1990, 2, 545–547.

    Article  CAS  Google Scholar 

  16. Ruiz-Hitzky, E.; Casal, B. Nature, 1978, 276, 596–597

    Article  CAS  Google Scholar 

  17. Wong, S.; Vasudevan, S.; Vaia, R.; Giannelis, E.; Zax, D. J. Am. Chem. Soc., 1995, 117, 7568–7569.

    Article  CAS  Google Scholar 

  18. Allcock, H. R.; Austin, P. E.; Neenan, T. X.; Sisko, J. T.; Blonsky, P. M.; Shriver, D. F. Macromolecules 1986, 19, 1508.

    Article  CAS  Google Scholar 

  19. Boukamp, B. A., Equivalent Circuit vs. 3.6. University of Twente, P.O. Box 217, 7500 A.E. Entshede, Netherlands.

  20. Rawsky, G.; Shriver, D. F. unpublished results.

  21. Vogel, H. Phys. Z. 1921, 22,645. Tamman, G.; Hesse, W. Z. Anorg. Allg. Chem 1926,165, 254. Fulcher, G. S. J. Am. Ceram. Soc. 1925, 8, 339.

    CAS  Google Scholar 

  22. Cheradame, H. In IUPAC Macromolecules; Benoit, H.; Rempp, P. Eds.; Pergamon Press: New York, 1982; p. 251.

  23. Killis, A.; LeNest, J. F.; Cheradame, H. J. J. Polym. Sci., Makromol. Chem., Rapid Commun. 1980, 1,595.

  24. Killis, A.; LeNest, J. F.; Gandini, A.; Cheradame, H. J. J. Polym. Sci. Polym. Phys. Ed. 1981, 19, 1073.

    Article  CAS  Google Scholar 

  25. Killis, A.; LeNest, J. F.; Gandini, A.; Cheradame, H. J.; Cohen-Addad, J. P. Solid State Ionics 1984, 14, 231.

    Article  CAS  Google Scholar 

  26. Druger, S. D.; Ratner, M. A.; Nitzan, A. Phys Rev. B. 1985, 31, 3939.

    Article  CAS  Google Scholar 

  27. Tipton, A. L.; Lonergan, M. C.; Shriver, D. F. J. Phys. Chem. 1994, 98, 4148.

  28. Lonergan, M. C.; Ratner, M. A.; Shriver, D. F. J Am. Chem. Soc. 1995, 117, 2344.

    Article  CAS  Google Scholar 

Download references

Acknowledgement

The author would like to thank The Electrochemical Society for the Colin Garfield Fink Summer Fellowship, the Army Research Office (DAAH-04-94-60066), the National Science Foundation (Award No.s DMR-9120521 and CHE-9256486), and Northwestern University. The author also gratefully acknowledges Dr. Gary Beall and Dr. Semeon Tsipursky of American Colloid Company for providing smectites and advice.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hutchison, J.C., Bissessur, R. & Shriver, D.F. Enhancement of Ion Mobility in Aluminosilicate-Polyphosphazene Nanocomposites. MRS Online Proceedings Library 457, 489–494 (1996). https://doi.org/10.1557/PROC-457-489

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/PROC-457-489

Navigation