Skip to main content
Log in

Fracture of Nanophase Ceramics: A Molecular-Dynamics Study

  • Published:
MRS Online Proceedings Library Aims and scope

Abstract

New multiscale algorithms and a load-balancing scheme are combined for molecular-dynamics simulations of nanocluster-assembled ceramics on parallel computers. Million-atom simulations of the dynamic fracture in nanophase silicon nitride reveal anisotropie self-affine structures and crossover phenomena associated with fracture surfaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. The Federal Research and Development Program in Materials Science and Technology (National Science and Technology Council, Washington, D. C, 1995).

  2. Silicon Nitride Ceramics. Scientific and Technological Advances, edited by I.-W. Chen, P. F. Becher, M. Mitomo, G. Petzow, and T.-S. Yen (Mat. Res. Soc. Symp. Proc. 287, Pittsburgh, PA, 1993).

  3. J. Karch, R. Birringer, and H. Gleiter, Nature 330, 556 (1987);R. W. Siegel, in Physics of New Materials, edited by F. E. Fujita (Springer-Verlag, Heidelberg, 1994) p. 65.

    Article  CAS  Google Scholar 

  4. P. Vashishta, R. K. Kalia, and I. Ebbsjo, Phys. Rev. Lett. 75, 858 (1995);C.-K. Loong, P. Vashishta, R. K. Kalia, and I. Ebbsjo, Europhys. Lett. 31, 201 (1995).

    Article  CAS  Google Scholar 

  5. A. Nakano, R. K. Kalia, and P. Vashishta, Phys. Rev. Lett. 73, 2336 (1994).

    Article  CAS  Google Scholar 

  6. A. Nakano, R. K. Kalia, and P. Vashishta, Phys. Rev. Lett. 75, 3138 (1995).

    Article  CAS  Google Scholar 

  7. R. K. Kalia, A. Nakano, A. Omeltchenko, K. Tsuruta, and P. Vashishta, Phys. Rev. Lett., submitted.

  8. K. Tsuruta, A. Omeltchenko, R. K. Kalia, and P. Vashishta, Europhys. Lett. 33, 441 (1996).

    Article  CAS  Google Scholar 

  9. H. Zhu and R. S. Averback, Mat. Sci. Eng. A 204, 96 (1995).

    Article  Google Scholar 

  10. P. Keblinski, S. R. Philpot, D. Wolf, and H. Gleiter, Phys. Rev. Lett. 77, 2965.

  11. R. K. Kalia, S. W. de Leeuw, A. Nakano, D. L. Greenwell, and P. Vashishta, Comput. Phys. Commun. 74, 316 (1993); A. Nakano, P. Vashishta, and R. K. Kalia, Comput. Phys. Commun. 77, 302 (1993); A. Nakano, R. K. Kalia, and P. Vashishta, Comput. Phys. Commun. 83, 197 (1994).

    Article  CAS  Google Scholar 

  12. A. Nakano, Int. J. Supercompter Appl. High Performance Comp., submitted.

  13. A. Nakano and T. Campbell, Para. Comp., submitted.

  14. P. Daguier, E. Bouchaud, and G. Lapasset, Europhys. Lett. 31, 367 (1995)

    Article  CAS  Google Scholar 

  15. J. Schmittbuhl, S. Roux, and Y. Berthaud, Europhys. Lett. 28, 585 (1994).

    Article  CAS  Google Scholar 

  16. E. Bouchaud and S. Navaéos, J. Phys. I (France) 5, 547 (1995).

    Google Scholar 

  17. P. Vashishta, R. K. Kalia, A. Nakano, W. Li, and I. Ebbsjö, in Amorphous Insulators and Semiconductors, edited by M. F. Thorpe and M. I. Mitkova (Kluwer, Dordrooht, 1996).

  18. V. Y. Milman, N. A. Stelmashenko, and R. Blumenfeld, Prog. Mat. Sci. 38, 425 (1994).

    Article  CAS  Google Scholar 

  19. B. B. Mandelbrot, D. E. Passoja, and A. J. Palma, Nature 308, 721 (1984).

    Article  CAS  Google Scholar 

  20. E. Bouchaud, G. Lapasset, and J. Planes, Europhys. Lett. 13, 73 (1990).

    Article  CAS  Google Scholar 

  21. K. J. Mälöy, A. Hansen, E. L. Hinrichsen, and S. Roux, Phys. Rev. Lett. 68, 213 (1992).

    Article  Google Scholar 

Download references

Acknowledgement

This work was supported by the U.S. Department of Energy, Grant No. DE-FG05-92ER45477, National Science Foundation, Grant No. DMR-9412965, Air Force Office of Scientific Research, Grant No. F 49620-94-1-0444, Army Research Office, Grant No. 36347-EL-DPS, Louisiana Education Quality Support Fund (LEQSF), Grant No. LEQSF96-99-RD-A-10, and USC-LSU Multidisciplinary University Research Initiative, Grant No. F 49620-95-1-0452. A part of these simulations were performed on the 128-node IBM SP computer at Argonne National Laboratory. The computations were also performed on parallel machines in the Concurrent Computing Laboratory for Materials Simulations (CCLMS) at Louisiana State University. The facilities in the CCLMS were acquired with the Equipment Enhancement Grants awarded by the Louisiana Board of Regents through LEQSF.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aiichiro Nakano.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nakano, A., Kalia, R.K., Omeltchenko, A. et al. Fracture of Nanophase Ceramics: A Molecular-Dynamics Study. MRS Online Proceedings Library 457, 187–192 (1996). https://doi.org/10.1557/PROC-457-187

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/PROC-457-187

Navigation