Skip to main content
Log in

How Rapid Isothermal Processing can be a Dominant Semiconductor Processing Technology in the 21St Century

  • Published:
MRS Online Proceedings Library Aims and scope

Abstract

The growth and advancement of the electronic and photonic industry in the 21st century hinges on revolutionary new processing techniques that will overcome some of the most fundamental limitations of conventional methods. Rapid isothermal processing (RIP) based on incoherent radiation as the source of optical and thermal energy can play a major role in designing processing systems that offer the tight process control, low thermal budgets, low microscopic defects, high throughput and high yields required for almost every semiconductor device. Conventional RIP can be further optimized by fully exploiting the contribution of quantum photoeffects. The improved performance and reliability offered by RIP will make it the mainstream technology for the green manufacture of microelectronics, optoelectronics, solar cells, flat panel displays and microelectromechanical systems. Key issues related to the cost of ownership, design of RIP system based on the full utilization of photo–thermal effects and model based control systems are described. New experimental results for a number of processing steps are provided. These results demonstrate the importance of advanced RIP systems in providing better performance and lower defects for future devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Singh, J. Appl. Phys., 63, R59–R114 (1988)

    Article  CAS  Google Scholar 

  2. H. Kroemer, Quantum Mechanics, Prentice Hall, N.J., 5 (1994)

    Google Scholar 

  3. R. Singh, Electronics, 58, 19 (Dec 15, 1985)

    Google Scholar 

  4. R. Singh, Semiconductor International, 9(1), 28 (1986)

    Google Scholar 

  5. R. Singh, P. Chou, F. Radpour, A. J. Nelson, and H. S. Ullal, J. Appl. Phys., 66,2381 (1989)

    Article  CAS  Google Scholar 

  6. R. Singh et. al., Appl. Phys. Lett., 58, 1217 (1991)

    Article  CAS  Google Scholar 

  7. R. Singh, Proc. International Conference on Beam Processing of Advanced Materials, published by TMS, 619 (1993)

    Google Scholar 

  8. J. Mavoori et. al., Appl. Phys. Lett., 65, 1935 (1994)

    Article  CAS  Google Scholar 

  9. R. Singh and R. P. S. Thakur, The Electrochem. Soc. Interface, 4, 28 (1995)

    CAS  Google Scholar 

  10. R. Singh, in Handbook of Compound Semiconductors, Noyes Publications, N.J., 442 (1995)

    Book  Google Scholar 

  11. M. M. Moslehi et. al., Solid State Technology, p. 34 (Jan 1994)

    Google Scholar 

  12. K. G. Reid and A. R. Sitaram, Solid State Technology, p. 63 (Feb 1996)

    Google Scholar 

  13. D. L. Dance and D. W. Jimenez, Semiconductor International, 6, (Sept. 1995).

    Google Scholar 

  14. R. P. S. Thakur, Rapid Thermal Processing and ULSI Electronics, in Semiconductor Fab Tech., Spring 1996 (In Press)

    Google Scholar 

  15. K. G. Kemp, D. F. Frost and K. F. Poole, IEEE Trans. Reliability, 39, 26 (1990)

    Article  Google Scholar 

  16. K. F. Poole, in Electronic Component Reliability, by F. Jensen, John Wiley & Sons, N.Y., chapter 11 (1995)

  17. M. S. Moosa, K. F. Poole and M. L. Grams, Proc. 7th International Conference Quality in Electronic Components, France (1995)

    Google Scholar 

  18. R. Singh et. al., Mat. Res. Soc, Symposia proc., 224,197 (1991)

    Article  Google Scholar 

  19. D. M. Dawson et. al., IEEE Trans. Control System Technol., 2, 233 (1994)

    Article  Google Scholar 

  20. Z. Qu, J. F. Dorsey and D. M. Dawson, IEEE Trans. Automatic Control, 39, 2219 (1994)

    Article  Google Scholar 

  21. J. J. Carroll and D. M. Dawson, IEEE Trans. Industrial Applications, 31, 248 (1995)

    Article  Google Scholar 

  22. G.E. Jellison Jr., and F. A. Modine, J. Appl. Physics, 39(1), 3758 (1994)

    Article  Google Scholar 

  23. P.J. Timans, J. Appl. Phys., 74(10) 6356(1993).

    Article  Google Scholar 

  24. P. W. Atkins, Physical Chemistry, W.H.Freeman &Co., N.Y., 294, (1990).

    Google Scholar 

  25. P. Suppan, Principles of Photochemistry, Chemical Society, London, 6 (1973).

    Google Scholar 

  26. K. N. Tu, J. W. Mayer, and L. C. Feldman, Electronic Thin Film Science for Electrical Engineers and Materials Scientists, Macmillan Publishing Company, N.Y, 46, (1992).

    Google Scholar 

  27. A. E. Kiv and F. T. Umarova, Sov. Phys. Semicond., 7(9), 474, (1970).

    Google Scholar 

  28. T. Yamazaki, S. Watanabe, and T. Ito, J. Electrochem. Soc., 137(1), 313, (1990).

    Article  CAS  Google Scholar 

  29. R. Sharangpani et. al., Mat. Res. Soc. Proc., 381,117 (1995)

    Article  CAS  Google Scholar 

  30. R. Singh and R. Sharangpani, Proc. 2nd Int. Dielectrics for VLSI/ULSI Multilevel Interconnect Conf., 78(1996)

    Google Scholar 

  31. R. Singh et. al., IEEE Trans. Appl. Superconductors, 3, 1 (1993)

    Article  Google Scholar 

  32. R. Singh, S. Alamgir and R. Sharangpani, Appl. Phys. Lett., 67, 3939 (1995)

    Article  CAS  Google Scholar 

  33. Z. Chen, J. Appl. Phys., 74, 2856 (1993)

    Article  CAS  Google Scholar 

  34. Y. Nissim et. al., Appl. Phys. Lett, 59, 656 (1991)

    Article  CAS  Google Scholar 

  35. R. Sharangpani et. al., Proc. 8th Int. Conf. InP and Related Materials held at Schwabish Gmund, Germany (In Press), (1996)

    Google Scholar 

Download references

Acknowledgments

The research reported here has been supported by DARPA (Low Power Electronics Program and High Temperature Superconductivity Program), Department of Commerce (Advanced Technology Program), National Science Foundation (EPSCOR Program) and APA Optics Inc. The technical support and encouragement of various program managers (Zachary Lemnios and Frank Patten of DARPA) and program monitors (Cynthia Hanson and Steve Russel of NCCOSC) is gratefully acknowledged. A number of graduate students and research associates have contributed most of the previously published results. During the course of this research we have interacted with a number of colleagues in industry, academia and government. It is not possible to mention all the individuals. In particular, the interaction with Joe Lorenzo of Hanscom Air Force Base, Asif Khan of APA optics Inc., A. Gat of AG Associates, Mehrdad Moslehi of CVC Products Inc., Pallab Chatterjee and Ashwini Shah of Texas Instruments, J. Narayan of NC State University, Hiroshi Iwai of Toshiba Corporation, A. R. Sitaram of Motorola and Y. Nissim of France Telecom is greatly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Singh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Singh, R., Sharangpani, R., Cherukuri, K. et al. How Rapid Isothermal Processing can be a Dominant Semiconductor Processing Technology in the 21St Century. MRS Online Proceedings Library 429, 81–94 (1996). https://doi.org/10.1557/PROC-429-81

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/PROC-429-81

Navigation