Skip to main content
Log in

Theoretical Study of Electron Initiated Impact Ionization Rate in Bulk GaN using a Wave Vector Dependent Numerical Transition Rate Formulation

  • Articles
  • Published:
MRS Online Proceedings Library Aims and scope

Abstract

In this paper, we present ensemble Monte Carlo based calculations of electron initiated impact ionization in bulk zincblende GaN using a wavevector dependent formulation of the interband impact ionization transition rate. These are the first reported estimates, either theoretical or experimental, of the impact ionization rates in GaN. The transition rate is determined from Fermi’s golden rule for a two-body screened Coulomb interaction using a numerically determined dielectric function as well as by numerically integrating over all of the possible final states. The Monte Carlo simulator includes the full details of the first four conduction bands derived from an empirical pseudopotential calculation as well as all of the relevant phonon scattering mechanisms. It is found that the ionization rate has a relatively "soft" threshold.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. S. Brandt, J. W. Ager III, W. Götz, N. M. Johnson, J. S. Harris Jr., R. J. Molnar, R. Singh, and T. D. Moustakas, Phys. Rev. B 49, 14758 (1994).

    Article  Google Scholar 

  2. S. Strite and H. Morkoc, J. Vac. Sci. Technol., B 10, 1237 (1992) and references therein.

    Google Scholar 

  3. Diamond, Silicon Carbide and Nitride Wide-Bandgap Semiconductors, Edited by C.H. Carter, Jr., G. Gildenblat, S. Nakamura, and R.J. Nemanich, MRS Symposia Proceedings No. 339 (Materials Resarch Society, Pittsburgh, 1994).

    Article  CAS  Google Scholar 

  4. P. Das and D.K. Ferry, Solid State Electron. 19, 851 (1976).

    Article  Google Scholar 

  5. M.A. Littlejohn, J.R. Hauser, and T.H. Glisson, Appl. Phys. Lett. 26, 625 (1976).

    Article  CAS  Google Scholar 

  6. B. Gelmont, K. Kim, and M. Shur, J. Appl. Phys. 74, 1818 (1993).

    Article  CAS  Google Scholar 

  7. N.S. Mansour, K.W. Kim, and M.A. Littlejohn, J. Appl. Phys. 77, 2834 (1995).

    Article  CAS  Google Scholar 

  8. R.P. Joshi, A.N. Dharamsi, and J. McAdoo, Apl. Phys. Lett. 64, 3611 (1994).

    Article  CAS  Google Scholar 

  9. J. Kolnik, I.H. Oguzman, K.F. Brennan, R. Wang, P.P. Ruden, and Y. Wang, J. Appl. Phys. 78, 1033 (1995).

    Article  Google Scholar 

  10. M. V. Fischetti and S.E. Laux, Phys. Rev. B, 38, 9721 (1988).

    Article  CAS  Google Scholar 

  11. Y.C. Chang, D.Z.-Y. Ting, J.Y. Tang, and K. Hess, Appl. Phys. Lett. 42, 76 (1983).

    Article  CAS  Google Scholar 

  12. J.G Ruch and W. Fawcett, J. Appl. Phys. 41, 3843 (1970).

    Article  Google Scholar 

  13. N. Sano, A. Yoshii, Phys. Rev. B 45, 4171 (1992).

    Article  Google Scholar 

  14. M. Stobbe, R. Redmer, W. Schattke, Phys. Rev. B 49, 4494 (1994).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Kolnik.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kolnik, J., Oguzman, I., Brennan, K. et al. Theoretical Study of Electron Initiated Impact Ionization Rate in Bulk GaN using a Wave Vector Dependent Numerical Transition Rate Formulation. MRS Online Proceedings Library 395, 733–738 (1995). https://doi.org/10.1557/PROC-395-733

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/PROC-395-733

Navigation