Skip to main content
Log in

Influence of Hydrogen On The Solid Phase Epitaxial Regrowth of Strained Layer Silicon Germanium Alloys

  • Articles
  • Published:
MRS Online Proceedings Library Aims and scope

Abstract

Strained layer Si/Si0.79Ge0.21 superlattices consisting of 16 alternating 19.0 nm Si0.79Ge0.21 / 18.5 nm Si layers have been amorphized by Si ion irradiation, then implanted with H ions to nominal atomic concentrations of 1%, 0.1% and 0.05% within the amorphized region. Subsequent solid phase epitaxy (SPE) at a regrowth temperature of 575°C was monitored in situ by time resolved reflectivity (TRR) measurements, while changes in the H distribution were measured by elastic recoil detection analysis (ERDA). Analysis was supplemented by Rutherford backscattering spectrometry (RBS), x-ray double crystal diffraction and reflectivity (DCD/XRF) and transmission electron microscopy (TEM). TRR data reveals a decrease in the initial SPE rate in the Si substrate from 4.9 Å/sec (no H) to 2Å/sec for 1% H concentration as well as a rate decrease as the interface enters the Si/SiGe layers. TRR also indicates an increased roughness in the crystal/amorphous interface with increasing H concentration. ERDA reveals that a significant fraction of the implanted H is stable in the amorphous region for the anneal times (10-30 min) at 575°C, while in the regrown lattice the H concentration has dropped below 20 ppm, near the detection limit of the ERDA. DCD shows almost no strain in the regrown structures. TEM and RBS channeling techniques reveal degradation in the crystal quality of epitaxially regrown structures and a large concentration of strain relieving defects originating near the second deepest of eight SiGe layers in all regrown structures. XRF indicates decreasing sharpness of the regrown Si/SiGe interfaces with increasing H concentration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. Schäffler, Solid State Electr. 37 765 (1994).

    Article  Google Scholar 

  2. B.T. Chilton, B.J. Robinson, D.A. Thompson, T.E. Jackman and J.-M. Baribeau, Appl. Phys. Lett. 54 42 (1989).

    Article  CAS  Google Scholar 

  3. D.C. Paine, DJ. Howard, N.G. Stoffel and J.A. Horton, J. Mater. Res. 5 1023 (1990).

    Article  CAS  Google Scholar 

  4. C. Lee, T. E. Haynes and K. S. Jones, Appl. Phys. Lett. 62 501 (1993).

    Article  CAS  Google Scholar 

  5. Z. Atzmon, M. Eizenberg, Y. Shachamdiamand, J.W. Mayer and F. Schäffler, J. Appl. Phys. 75 3936 (1994).

    Article  CAS  Google Scholar 

  6. R.G. Elliman and W.C. Wong, Nucl. Instr. Meth. B85 178 (1994).

    Article  Google Scholar 

  7. D.C. Paine, D.J. Howard and N.G. Stoffel, J. Electr. Mater. 20 735 (1991).

    Article  CAS  Google Scholar 

  8. F. Corni, S. Frabboni, G. Ottaviani, G. Queirolo, D. Bisero, C. Bresolin, R. Fabbri and M. Servidori, J. Appl. Phys. 71 2644 (1992).

    Article  CAS  Google Scholar 

  9. S.Y. Shiryaev, M. Fyhn and A.N. Larsen, Appl. Phys. Lett. 63 3476 (1993).

    Article  CAS  Google Scholar 

  10. P. Kringhoj and R.G. Elliman, Phys. Rev. Lett. 73 858 (1994).

    Article  CAS  Google Scholar 

  11. L. Csepregi, E.F. Kennedy, T.J. Gallagher, J.W. Mayer and T.W. Sigmon, J. Appl. Phys. 48 4243 (1977).

    Article  Google Scholar 

  12. E.F. Kennedy, L. Csepregi, J.W. Mayer and T.W. Sigmon, J. Appl. Phys. 48 4241 (1977).

    Article  CAS  Google Scholar 

  13. J.A. Roth, G.L. Olsen, D.C. Jacobson and J.M. Poate, Appl. Phys. Lett. 57 1023 (1990).

    Article  Google Scholar 

  14. J.-M. Baribeau, T.E. Jackman, D.C. Houghton, P. Maigne and M.W. Denhof, J. Appl. Phys. 63 5738 (1988).

    Article  CAS  Google Scholar 

  15. PF. Fewster, Semicond. Sci. Technol. 8 1915 (1993).

    Article  CAS  Google Scholar 

  16. W.K. Chu, J.W. Mayer and M.-A. Nicolet, Backscattering Spectrometry (Academic Press, New York, 1978).

    Book  Google Scholar 

  17. J.F. Ziegler, J.P. Biersack and U. Littmark, The Stopping and Ranges of Ions in Solids (Pergamon, New York, 1985).

    Google Scholar 

  18. E. Szilágyi, F. Pászti, V. Quillet and F. Abel, Nucl. Inst. Meth. B85 63 (1994).

    Article  Google Scholar 

  19. L.R. Doolittle, Nucl. Inst. Meth. B9 344 (1985).

    Article  CAS  Google Scholar 

  20. M.O. Thompson, L.R. Doolittle, (private communication).

  21. E.A. Milne, Phys. Rev. 93 762 (1954).

    Article  CAS  Google Scholar 

  22. G.L. Olsen and J.A. Roth, Materials Science Reports, 3 1 (1988).

    Article  Google Scholar 

  23. J.C. Oberlin, A.C. Chami, E. Ligeon and C. Prunier, Nucl. Instr. Meth. B19 (1987) 462.

    Article  Google Scholar 

  24. K. Zellama, P. Germain, S. Squelard and J. Monge, J. Non-Cryst. Solids, 35 & 36 (1980) 225.

    Article  Google Scholar 

  25. C. Licoppe, Y.I. Nissim, C. Meriadec and P. Krauz, J. Appl. Phys. 60 (1986) 1352.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Love, D., Endisch, D., Simpson, T.W. et al. Influence of Hydrogen On The Solid Phase Epitaxial Regrowth of Strained Layer Silicon Germanium Alloys. MRS Online Proceedings Library 379, 461–466 (1995). https://doi.org/10.1557/PROC-379-461

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/PROC-379-461

Navigation