Skip to main content
Log in

Local Electronic Structure and Cohesion of Grain Boundaries in Ni3Al

  • Published:
MRS Online Proceedings Library Aims and scope

Abstract

One of the fundamental questions concerning Ni3Al is why doping with boron improves the room temperature ductility of the polycrystalline material. Boron is thought to prevent environmental embrittlement and increase the cohesive strength of grain boundaries since it changes the fracture mode from intergranular to transgranular. This change in cohesive energy must be reflected in the bonding changes at the grain boundary which can be probed using spatially resolved electron energy loss spectroscopy (EELS). We have examined grain boundaries in both undoped and boron doped Ni0.76-Al0.24 using EELS, EDX and ADF imaging in a UHV STEM. Ni-enrichment is seen in a 0.5-1 nm wide region at large angle grain boundaries, both in the absence and presence of B. EELS shows that B. segregation can vary along the interface. The Ni L2,3 core edge fine structure which is sensitive to the filling of the Ni d-band, shows only the boron rich regions of the grain boundary to have a bonding similar to that of the bulk material. These results demonstrate that boron segregation increases the cohesive energy and hence improves the fracture resistance of the grain boundary, by making the bonding at boundaries similar to that in the bulk. The measured changes in d band filling may also affect the local solubility of hydrogen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E.P. George, C.T. Liu and D. Pope, Scripta Metall, 30, p. 37 (1993).

    Article  Google Scholar 

  2. C.T. Liu, Scripta Metall., 27, p. 25 (1992).

    Article  Google Scholar 

  3. K. Aoki and O. Izumi, J. Japan Inst. Met., 43 p. 1190 (1979).

    Article  CAS  Google Scholar 

  4. C.T. Liu, C.L. White and J.A. Horton, Acta. Metall., 33, p. 213 (1985).

    Article  CAS  Google Scholar 

  5. S.S. Brenner, H. Ming-Jian, Scripta Metall., 25, p. 1271 (1991).

    Article  CAS  Google Scholar 

  6. M.K. Miller and J.A. Horton, J. de Phys. 47 p. C7–263 (1986).

    Google Scholar 

  7. J.E. Krzanowski, Scripta Metall., 23, p. 1219 (1989).

    Article  CAS  Google Scholar 

  8. M.J. Mills, Scripta Metall., 23, p. 2061 (1989).

    Article  CAS  Google Scholar 

  9. S.M. Foiles, MRS Proceedings 81 p. 51 (1987).

    Article  CAS  Google Scholar 

  10. S.P. Chen et.al., Scripta Metall., 23, p.217 (1989).

    Article  CAS  Google Scholar 

  11. D.A. Muller, P.E. Batson, S. Subramanian, S.L. Sass, J. Silcox, MRS Proc 319, p. 99 (1994). Also submitted to Acta. Metall., July 1994.

    Google Scholar 

  12. D.A. Muller and J. Silcox, Proc. 51st MSA proc p.626.(1993).

    Google Scholar 

  13. A.V. Crewe, J. Wall, J. Langmore, Science 168 p. 1338 (1970).

    Article  CAS  Google Scholar 

  14. P.E. Batson, Nature 366 p. 728 (1993).

    Article  Google Scholar 

  15. N.D. Browning, M.M. Chisholm, S.J. Pennycook, Nature 366 p. 143 (1993).

    Article  CAS  Google Scholar 

  16. D.A. Muller, Y. Tzou, R. Raj, J. Silcox, Nature 366 p. 725 (1993).

    Article  CAS  Google Scholar 

  17. R.D. Leapman, P. Rez, D.F. Mayers, J. Chem.Phys. 72 p. 1232 (1980).

    Article  CAS  Google Scholar 

  18. D.H. Tomboulian, and D.E. Bedo, Phys. Rev. 104 p. 590 (1956).

    Article  Google Scholar 

  19. C. Colliex and B. Jouffrey, Phil. Mag. 25 491–511 (1972).

    Article  CAS  Google Scholar 

  20. M. Brown, R.E. Peierls, E.A. Stern, Phys. Rev. B15 p. 738 (1977).

    Article  Google Scholar 

  21. L.F. Mattheiss, R.E. Dietz, Phys. Rev. B22 p. 1663 (1980).

    Article  Google Scholar 

  22. D.G. Pettifor in “Electron Theory in Alloy Design”, Ed. D.G. Pettifor and A.H. Cottrell, Alden Press (Oxford) p. 81 (1992).

  23. A. Pasturel, P. Hichter, F. Cyrot-Lackmann, J. Less Comm. Met. 86, p. 181 (1982).

    Article  CAS  Google Scholar 

  24. M.W. Finnis, J.E. Sinclair, Phil Mag A 50, p. 45 (1984).

    Article  CAS  Google Scholar 

  25. C.D. Gelatt, H. Ehrenreich and J.A. Weiss, Phys. Rev. B17 p. 1940 (1979).

    Google Scholar 

  26. A.R. Williams, J. Kubler and C.D. Gelatt, Phys. Rev. B19 p. 6094 (1979).

    Article  Google Scholar 

  27. W. Sieglin, K.H. Leiser and H. Witte, Z. Elektrochem. 61, p. 359 (1957).

    Google Scholar 

  28. D. McMullan, P.J. Fallon, Y. Ito and A.J. McGibbon, Proc EUREM 92, Electron Microscopy Vol. 1, Granada Spain p. 103 (1992).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Muller, D.A., Subramanian, S., Sass, S.L. et al. Local Electronic Structure and Cohesion of Grain Boundaries in Ni3Al. MRS Online Proceedings Library 364, 743–748 (1994). https://doi.org/10.1557/PROC-364-743

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/PROC-364-743

Navigation