Skip to main content
Log in

Use of Quantum-Well Superlattices to Obtain a High Figure of Merit from Nonconventional Thermoelectric Materials

  • Published:
MRS Online Proceedings Library Aims and scope

Abstract

Currently, the materials with the highest thermoelectric figure of merit (ZT) are one-band materials. The presence of both electrons and holes lowers ZT, so two-band materials such as semimetals are not useful thermoelectric materials. However, by preparing these materials in the form of two-dimensional quantum-well superlattices, it is possible to separate the two bands and transform the material to an effectively one-carrier system. We have investigated theoretically the effect of such an approach and our results indicate that a significant increase in ZT may be achieved. We have also evaluated the possibility of using intercalation as a means to achieve an increase in ZT. Our results allow the possibility of using new types of materials as thermoelectric refrigeration elements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. J. Goldsmid, Thermoelectric Refrigeration (Plenum, New York, 1964).

    Book  Google Scholar 

  2. H. J. Goldsmid, Electronic Refrigeration (Pion, London, 1986), p. 2.

    Google Scholar 

  3. L. D. Hicks and M. S. Dresselhaus, Phys. Rev. B 47, 12727 (1993).

    Article  CAS  Google Scholar 

  4. J. N. Schulman and T. C. McGill, in Synthetic Modulated Structures, edited by L. L. Chang and B. C. Giessen (Academic, Orlando, 1985), pp. 96–98.

  5. J. M. Berroir, Y. Guldner, J. P. Vieren, M. Voos, and J. P. Faurie, Phys. Rev. B 34, 891 (1986).

    Article  CAS  Google Scholar 

  6. C. F. Gallo, B. S. Chandrasekhar, and P. H. Sutter, J. Appl. Phys. 34, 144 (1963).

    Article  CAS  Google Scholar 

  7. N. W. Ashcroft and N. D. Mermin, Solid State Physics (Saunders College, Philadelphia, 1976), Chap. 13.

    Google Scholar 

  8. D. Schiferl and C. S. Barrett, J. Appl. Crystallogr. 2, 30 (1969).

    Article  CAS  Google Scholar 

  9. M. S. Dresselhaus, in Proc. Conf. Phys. Semimetals and Narrow-Gap Semiconductors, Dallas 1970, edited by D. L. Carter and R. T. Bate (Pergamon, Oxford, 1971), pp. 16–17.

  10. R. T. Isaacson and G. A. Williams, Phys. Rev. 185, 682 (1969).

    Article  Google Scholar 

  11. G. A. Saunders and Z. Sümengen, Proc. Roy. Soc. London A329, 453 (1972).

    Google Scholar 

  12. D. L. Partin, J. Heremans, D. T. Morelli, C. M. Thrush, C. H. Oik, and T. A. Perry, Phys. Rev. B 38, 3818 (1988).

    Article  CAS  Google Scholar 

  13. S. C. Shin, J. E. Hilliard, and J. B. Ketterson, Thin Solid Films 111, 323 (1984).

    Article  CAS  Google Scholar 

  14. N. B. Brandt, S. M. Chudinov, and V. G. Karavaev, Sov. Phys. JETP 34, 368 (1972).

    Google Scholar 

  15. M. S. Dresselhaus and G. Dresselhaus, Adv. Phys. 30, 139 (1981).

    Article  CAS  Google Scholar 

  16. V. A. Kulbachinskii, Z. D. Kovalyuk, and M. N. Pyrlya, Phys. Stat. Sol. (b) 169, 157 (1992).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hicks, L.D., Dresselhaus, M.S. Use of Quantum-Well Superlattices to Obtain a High Figure of Merit from Nonconventional Thermoelectric Materials. MRS Online Proceedings Library 326, 413–418 (1993). https://doi.org/10.1557/PROC-326-413

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/PROC-326-413

Navigation