Skip to main content
Log in

Direct Solid State Phase Transformation from Co to Epitaxial CoSi2 in Co / Thin Ti / (100) Si Structure and its Application for Shallow Junction Formation

  • Published:
MRS Online Proceedings Library Aims and scope

Abstract

Direct epitaxial CoSi2 formation from Co, which is contrary to the reported silicidation process: Co→Co2Si→CoSi→CoSi2, has been found during anneal of Co / Ti / (100) Si system. 2 nm thick Ti and 15 nm thick Co films were sputter deposited, and then annealed for 30 min at temperatures between 375°C and 900°C. At room temperature, the 2 nm Ti immediately forms an amorphous Ti-Si-Co layer between the Co and Si. Epitaxial CoSi2 begins to form at 400°C, while the amorphous layer continues to act as both a Co diffusion retardant and Si diffusion suppressant even at 900°C. This retarded diffusion of Co reduces the growth rate of the CoSi2 over the entire temperature range studied. Superiority of the epitaxial to polycrystalline suicide has been demonstrated. In self aligned structures, an epitaxial CoSi2 film is formed by a single-step anneal without any overgrowth onto adjacent field oxide areas utilizing the amorphous diffusion controlling layer. A p+/n junction of 40 nm depth with reduced leakage and low ideality factor has been obtained by impurity diffusion from epitaxial CoSi2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C-S. Wei, D. B. Fraser, M. L. A. Dass, M. Frost, and T. Brat, V-MIC, p.233 (1990)

    Google Scholar 

  2. M. L. A. Dass, D. B. Fraser, and C. Wei, Appl. Phys. Lett. 58, 1308 (1991)

    Article  CAS  Google Scholar 

  3. K. Barmak, L. A. Clevenger, P. D. Agnello, E. Ganin, M. Copel, P. Dehaven, J. Falta, F. M. d’Heurle, and C. Cabrai Jr., Mat. Res. Soc. Symp. Proc. Vol. 238, p.575, (1992)

    Article  CAS  Google Scholar 

  4. S. L. Hsia, T. Y. Tan, P. Smith, and G. E. McGuire, J. Appl. Phys. 72, 1864, (1992)

    Article  CAS  Google Scholar 

  5. F. Hong, B. K. Patnaik, G. A. Rozgonyi, and C. M. Osburn, Mat. Res. Soc. Symp. Proc. Vol. 303, (1993)

  6. S. Ogawa, M. L. A. Dass, J. A. Fair, T. Kouzaki, and D. B. Fraser, Mat. Res. Soc. Symp. Proc. Vol. 312, p. 193, (1993)

    Article  CAS  Google Scholar 

  7. H. Jiang, C. M. Osburn, Z.-G. Xiao, G. McGuire, and G. A. Rozgonyi, J. Electrochem. Soc, Vol. 139, 211 (1992)

    Article  CAS  Google Scholar 

  8. Q. Wang, C. M. Osburn, and C. A. Canovai, IEEE Trans. Electron Devices, ED-39, 2486 (1992)

    Article  Google Scholar 

  9. S. Ogawa, T. Kouzaki, T. Yoshida, and R. Sinclair, J. Appl. Phys. 70, 827 (1991)

    Article  CAS  Google Scholar 

  10. X. Y. Qian, Appl. Phys. Lett. 59, 348 (1991)

    Article  CAS  Google Scholar 

  11. S. P. Murarka, M. H. Read, C. J. Doherty, and D. B. Fraser, J. Electrochem. Soc. 129, 293 (1982)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Authors would like to thank T. Ito at Stanford University for his help of TEM work and the following at Intel: V. Ochoa, E. Fojas, and J. Talens for wafer support, M. L. A. Dass and C. Matos for TEM sample preparation. Support from D. Hodul, R. McFarland and J. Sonico of Varian are also gratefully acknowledged. P. Gargini at Intel, Y. Terui and N. Nomura at Matsushita are also very acknowledged for their encouragement throughout this work.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ogawa, S., Fair, J.A., Kouzaki, T. et al. Direct Solid State Phase Transformation from Co to Epitaxial CoSi2 in Co / Thin Ti / (100) Si Structure and its Application for Shallow Junction Formation. MRS Online Proceedings Library 320, 355–360 (1993). https://doi.org/10.1557/PROC-320-355

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/PROC-320-355

Navigation