Skip to main content
Log in

Detection of Hydrogen in Bulk and Thin Film Silicon Dioxide by Hydrogen Nuclear Magnetic Resonance

  • Published:
MRS Online Proceedings Library Aims and scope

Abstract

Hydrogen is a common impurity in silicon dioxide (SiO2) which can influence its optical and electronic properites. Here, nuclear magnetic resonance (NMR) is applied to study of hydrogen in these materials, despite their relatively low hydrogen content. We present results for bulk fused silica as well as thermally grown films of SiO2 on silicon. These experiments demonstrate the potential of solid state NMR for studying low hydrogen content film systems. In bulk fused silica, we have observed that although the majority of hydrogen is isolated, a small number of centers exist involving adjacent silanol pairs. These pairs react during high temperature annealing as well as during deep ultraviolet irradiation. Furthermore, the presence of these centers is related to the susceptibility of fused silica to radiation damage. The results obtained on the fused silica material are compared to SiO2 films on silicon. The NMR spectra and relaxation associated with thick (>1μm) wet SiO2 films are similar to those for the fused silica while the NMR data for thinner oxide more closely resembles those of surface water on silica gel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. W. Lee,. Phys. Chem. Glasses 5, 35 (1964).

    CAS  Google Scholar 

  2. A. J. Moulson and J. P. Roberts, Trans. Faraday Soc. 57, 1208 (1961).

    Article  Google Scholar 

  3. G. E. Walrafen and S. R. Samanta, J. Chem. Phys. 69(1), 493 (1978).

    Article  CAS  Google Scholar 

  4. M. Rothschild, D. J. Ehrlich and D. C. Shaver, Appl. Phys. Lett. 55, 1276 (1989).

    Article  CAS  Google Scholar 

  5. D. L. Griscom, M. Stapelbroeck, and E. J. Friebele, J. Chem. Phys 78, 1638 (1983).

    Article  CAS  Google Scholar 

  6. E. A. Irene, J. Electrochem. Soc., 125, 1708 (1979).

    Article  Google Scholar 

  7. V. K. Samalam, Appl. Phys. Lett., 47, 736 (1985).

    Article  CAS  Google Scholar 

  8. A. G. Revesz, J. Electrochem. Soc., 126, 122 (1979).

    Article  CAS  Google Scholar 

  9. V. Lakshmanna, A. S. Vengurlekar, and K. V. Ramanathan, J. Appl. Phys., 62, 2337 (1987).

    Article  CAS  Google Scholar 

  10. E.H. Poindexter and P.J. Caplan, Prog. Surf. Sci. 14, 201 (1983).

    Article  CAS  Google Scholar 

  11. M. L. Reed and J. D. Plummer, Appl. Phys. Lett., 51, 514, (1987).

    Article  CAS  Google Scholar 

  12. M. L. Reed and J. D. Plummer, J. Appl. Phys., 63, 5776 (1988).

    Article  CAS  Google Scholar 

  13. M. A. Briere and D. Braunig, IEEE Trans. Nuc. Sci., 37, 1658 (1990).

    Article  CAS  Google Scholar 

  14. A. D. Marwick and D. R. Young, J. Appl. Phys., 63, 2291 (1988).

    Article  CAS  Google Scholar 

  15. I. S. T. Tsong, M. D. Monkowski, J. R. Monkowski, P. D. Miller, C. D. Moak, B. R. Appleton, and A. L. Wintenberg, “Investigation of Hydrogen and Chlorine at the Si/SiO2 Interface”, from The Preparation of MPS Insulators, Lucovsky ed. (1980).

    Google Scholar 

  16. C. W. Magee and E. M. Botnick, J. Vac. Sci. Technol., 19, 47 (1981).

    Article  CAS  Google Scholar 

  17. H. Shanks, C. J. Fang, L. Ley, M. Cardona, F. J. Demond, S. Kalbitzer, Phys. Stat. Sol. (b), 100, 43 (1980).

    Article  CAS  Google Scholar 

  18. K. H. Beckman and N. J. Harrick, J. Electrochem. Soc., 118, 614 (1971).

    Article  Google Scholar 

  19. R. F. Bartholomew and J. W. H. Schreurs, J. Noncryst. Solids, 38–39, 679 (1980).

    Article  Google Scholar 

  20. H. Eckert, J. P. Yesinowski, L. A. Silver, and E. M. Stolper, J. Phys. Chem., 92, 2055 (1988).

    Article  CAS  Google Scholar 

  21. D. H. Levy, K.K Gleason, M. Rothschild, J. H. C. Sedlacek, Appl. Phys. Lett., 60, 1667 (1992).

    Article  CAS  Google Scholar 

  22. F. Hanus and P. Gillis, J. Mag. Res., 59, 437 (1984).

    CAS  Google Scholar 

  23. J. R. Zimmerman, B. G. Holmes, and J. A. Lasater, J. Phys. Chem., 60, 1157 (1956).

    Article  CAS  Google Scholar 

  24. D. H. Levy and K. K. Gleason, J. Vac. Sci. and Technol.A, in press.

  25. T. C. Farrar and E. D. Becker, Pulse and Fourier Transform NMR: Introduction to Theory and Methods (Academic Press, New York, 1971), p. 25

    Google Scholar 

  26. M. S. Conradi and R. E. Norberg, Phys. Rev. B 24, 2285 (1981).

    Article  CAS  Google Scholar 

  27. A. Abragam, Principles of Nuclear Magnetism, (Oxford Univ. Press, Oxford, 1961).

    Google Scholar 

  28. B. C. Bunker, D. R. Tallant, T. J. Headley, G. L. Turner, and R. J. Kirkpatrick, Phys. Chem. Glasses 29, 106 (1988).

    CAS  Google Scholar 

  29. R. A. B. Devine and J. Arndt, Phys. Rev. B 39(8), 5132 (1989).

    Article  CAS  Google Scholar 

  30. M. Stapelbroeck, D. L. Griscom, E. J. Friebele, and G. H. Sigel, Jr., J. Non-Cryst. Solids 32, 313 (1979).

    Article  Google Scholar 

  31. D.H. Levy, K.K. Gleason, M. Rothchild, and J.H. Sedlacek, J. Appl. Phys. submitted.

  32. P. J. Burkhardt, J. Electrochem. Soc., 114, 196 (1967).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge the support of the National Science Foundation through grant No. DMR 8918834. We thank Dr. Mordy Rothschild and Jan Sedlacek of Lincoln Lab for the excimer laser irradiations and optical measurements and Dr. Rolf Takke of Heraeus Quartzglas for supplying the fused silica samples.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Levy, D.H., Gleason, K.K. Detection of Hydrogen in Bulk and Thin Film Silicon Dioxide by Hydrogen Nuclear Magnetic Resonance. MRS Online Proceedings Library 284, 259–264 (1992). https://doi.org/10.1557/PROC-284-259

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/PROC-284-259

Navigation