Skip to main content
Log in

Entropy of Hydrophobic Hydration: A New Statistical Mechanical Formulation

  • Published:
MRS Online Proceedings Library Aims and scope

Abstract

A statistical mechanical formulation is presented for the entropy of solution of simple molecules in water. The formulation is based on the Green-Wallace expansion for the entropy in terms of multiparticle correlation functions, which is derived here for rigid polyatomic fluids and for mixtures. With a factorization assumption for the solute-water correlation function we have been able to separate the translational and orientational contributions to the entropy of solution. This approach is applied to an infinitely dilute solution of methane in water. The required correlation functions are obtained by Monte Carlo simulation. The orientational contribution, which is due directly to the orientational asymmetry of water-water interactions, is found to be comparable to the translational contribution. We find that the large entropies and heat capacities of hydrophobic hydration can be accounted for by solute-water correlations alone and that large perturbations in water structure are not required to explain hydrophobic behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. D. C. WallaceJ. Chem. Phys. 87, 2282 (1987); Phys. Rev. A 38, 469 (1988); Phys. Rev. A 39, 4843 (1989); Proc. R. Soc. Lond. A 433, 615 (1991).

    Article  CAS  Google Scholar 

  2. H. S. Green, The Molecular Theory of Fluids (North-Holland, Amsterdam, 1952).

    Google Scholar 

  3. C. G. Gray andK. E. Gubbins, Theory of Molecular Fluids, vol. 1 (Clarendon Press, Oxford, 1984), chapter 3.

  4. T. Lazaridis, and M. E. Paulaitis, J. Phys. Chem., 1992 (in press).

    Google Scholar 

  5. J. G. Kirkwood, J. Chem. Phys. 10, 394 (1942).

    Article  CAS  Google Scholar 

  6. A. Baranyai and D. J. Evans, Phys. Rev. A 40, 3817 (1989).

    Article  CAS  Google Scholar 

  7. A. Baranyai and D. J. Evans, Phys. Rev. A 42, 849 (1990).

    Article  CAS  Google Scholar 

  8. W. L. Jorgensen. BOSS version 2.8, (Yale University, New Haven, Connecticut, 1989).

    Google Scholar 

  9. W. L. Jorgensen, J. Chandrasekhar, J. D. Madura, R. W. Impey, and M. L. Klein, J. Chem. Phys. 79, 926 (1983).

    Article  CAS  Google Scholar 

  10. J. C. Owicki and H. A. Scheraga, Chem. Phys. Lett. 47, 600 (1977).

    Article  CAS  Google Scholar 

  11. A. Ben-Naim and Y. Marcus, J. Chem. Phys. 81, 2016 (1984).

    Article  CAS  Google Scholar 

  12. H. Naghibi, S. F. Dec and S. J. Gill, J. Phys. Chem. 90, 4621 (1986).

    Article  CAS  Google Scholar 

  13. T. R. Rettich, Y. P. Handa, R. Battino and E. Wilhelm, J. Phys. Chem. 85, 3230 (1981).

    Article  CAS  Google Scholar 

  14. G. L. Pollack, Science 251, 1323 (1991).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to Prof. R.H. Wood for numerous helpful discussions. We also thank Prof. W.L. Jorgensen for making the program BOSS available to us and Dr. Wallace for communicating to us unpublished results. This work was supported by the National Science Foundation (grant CPE8351228). Partial support was also provided by Union Carbide, Merck and Exxon.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lazaridis, T., Paulaitis, M.E. Entropy of Hydrophobic Hydration: A New Statistical Mechanical Formulation. MRS Online Proceedings Library 278, 319–324 (1992). https://doi.org/10.1557/PROC-278-319

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/PROC-278-319

Navigation