Skip to main content
Log in

Spontaneous Vesicles and other Solution Structures in Catanionic Mixtures

  • Published:
MRS Online Proceedings Library Aims and scope

Abstract

We have prepared spontaneous, single-walled, equilibrium vesicles of controlled size and surface charge from aqueous mixtures of simple, commercially available, single-tailed cationic and anionic surfactants. We believe vesicle formation results from the production of anion-cation surfactant pairs which then act as double-tailed zwitterionic surfactants. Although unilamellar vesicles have been created by numerous physical and chemical techniques from multilamellar dispersions, all such vesicle systems revert to the equilibrium, multilamellar phase over time. These catanionic vesicles are stable for periods as long as several years and appear to be the equilibrium form of aggregation. Here we review the phase behavior and structural studies of several such mixtures, with particular focus on the effect of surfactant tail lengths on size and location of the vesicle phase in the appropriate phase diagram. The approach to equilibrium is also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A.D. Bangham, M.M. Standish, and J.C. Watkins, J. Mol. Biol. 13, 238 (1965).

    Article  CAS  Google Scholar 

  2. J. Fendler, Membrane Mimetic Chemistry (Wiley, New York, 1983).

    Google Scholar 

  3. M. J. Ostro, Ed., Liposomes: From Biophysics to Therapeutics (Marcel Dekker, New York, 1987).

    Google Scholar 

  4. S. Bhandarkar, A. Bose, J. Colloid Interface Sci. 135, 531 (1990).

    Article  CAS  Google Scholar 

  5. J. Zasadzinski, L.E. Scriven, and H.T. Davis, Phil Mag. A 51, 287 (1985).

    Article  CAS  Google Scholar 

  6. Both uni- and multilamellar lipid and surfactant aggregates are called liposomes. Within this classification are three acronyms - MLV for multilamellar vesicle, SUV for small unilamellar vesicle (<100 nm diameter) and LUV for large unilamellar vesicle (>100 nm). See: D. Papahadjopolous, Ann. NY Acad. Sci. 308, 367 (1978).

    Google Scholar 

  7. F. Szoka and D. Papahadjopolous, Ann. Rev. Biophys. Bioeng. 2, 467 (1980).

    Article  Google Scholar 

  8. J. Virdon (private communication).

  9. L. Rydhag, P. Stenius, L. Ödberg, J. Coll. Interface Sci. 86, 275 (1982).

    Article  Google Scholar 

  10. H. Hauser, N. Gains, H. Eibl, M. Müller, E. Wehrli, Biochemistry 25, 2126 (1986).

    Article  CAS  Google Scholar 

  11. L. Gros, H. Ringsdorf, H. Schupp, Angew. Chem. Int. Ed. Engl. 20, 305 (1981).

    Article  Google Scholar 

  12. J. Zasadzinski, P. Vosejpka, W.G. Miller, J. Coll. Interface Sci. 110, 347 (1986).

    Article  CAS  Google Scholar 

  13. E.W. Kaler, K.L. Herrington, A.K. Murthy, and J. Zasadzinski, J. Phys. Chem. (in press).

  14. E.W. Kaler, A. K. Murthy, B. Rodriguez, J. Zasadzinski, Science 245, 1371 (1989).

    Article  CAS  Google Scholar 

  15. E.W. Kaler, K.L. Herrington, D.D. Miller, and J. Zasadzinski, in Structure and Dynamics of Supramolecular Aggregates, edited by S.H. Chen, J.S. Huang, and P. Tartaglia (Kluwer Academic Publishers, Dordrecht, 1992).

    Google Scholar 

  16. A.K. Murthy, E. W. Kaler, and J. A. N. Zasadzinski, J. Coll. Interface Sci. 145, 598 (1991).

    Article  CAS  Google Scholar 

  17. C. Gamboa and L. Sepulveda, J. Coll. Interface Sci., 113, 566 (1986).

    Article  CAS  Google Scholar 

  18. T. Shikata, H. Hirata, and T. Kotaka, Langmuir 3, 1081 (1987).

    Article  CAS  Google Scholar 

  19. J. Weers, E. W. Kaler, and K. L. Herrington, manuscript in preparation.

  20. C. Tanford, The Hydrophobic Effect (Wiley, New York, 1980).

    Google Scholar 

  21. J. Israelachvili, D. J. Mitchell and B. W. Ninham, J.Chem. Soc. Faraday Trans. II, 22, 1525 (1976).

    Article  Google Scholar 

  22. J. Israelachvili, Intermolecular and Surface Forces (Academic Press, New York, 1985).

    Google Scholar 

  23. K. L. Herrington and E. W. Kaler, manuscript in preparation.

  24. S. A. Safran, P. Pincus, and D. AndelmanScience 248, 354 (1990).

    Article  CAS  Google Scholar 

  25. S. A. Safran, P. Pincus, D. Andelman, and F.C. MacKintosh, Phys. Rev. A 43, 1071 (1991).

    Article  CAS  Google Scholar 

  26. W. Helfrich, Z. Naturforsch. 28c, 693 (1973).

    Article  Google Scholar 

  27. W. Helfrich, Z. Naturforsch 33a, 305 (1978).

    Article  CAS  Google Scholar 

  28. L. Cantu, M. Corti, M. Musolino, P. Salina, Europhys. Lett. 3, 561 (1990).

    Article  Google Scholar 

Download references

Acknowledgements

We acknowledge many useful discussions with Jacob Israelachvili, Fyl Pincus, Sam Safran, and Fred Mackintosh on the theoretical aspects of spontaneous vesicles. JANZ acknowledges financial support from the National Science Foundation (CBT 86-57444) and the Petroleum Research Fund, administered by the ACS, for partial support of this work. EWK acknowledges support from the University of Delaware Research Foundation, The Clorox Company, and the National Science Foundation (PYIA 83-51179 and CTS 91-02719).

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kaler, E.W., Herrington, K.L. & Zasadzinski, J.A.N. Spontaneous Vesicles and other Solution Structures in Catanionic Mixtures. MRS Online Proceedings Library 248, 3–10 (1991). https://doi.org/10.1557/PROC-248-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/PROC-248-3

Navigation