Skip to main content
Log in

Two - Step Martensitic Transformations in TiNi(10% Cu) Shape Memory Alloys

  • Published:
MRS Online Proceedings Library Aims and scope

Abstract

Third element additions to TiNi provide a wide range of modifications of its shape memory properties. The advantages of Cu additions are to provide a more narrow hysteresis, less sensitivity to the Ti::Ni(+Cu) ratio of the temperature at which martensite starts to form (Ms), a larger strength differential between the austenite and martensite phases, and superior fatigue resistance. The substitution of a few atomic percent Cu for Ni does not significantly alter the crystal structure of either the cubic B2 austenite nor the monoclinic B19′ martensite phases; however, the addition of greater than 10% Cu results in an orthorhombic B19 martensite phase. For the case of 10% Cu, a two-step martensitic transformation occurs upon cooling, with the cubic austenite transforming to the orthorhombic B19 martensite and subsequently to the monoclinic B19′ martensite. As a result of this two-step crystallographic transformation, material properties such as resistivity and shape change also exhibit a two-step transformation.

In situ transmission electron microscopy heating and cooling experiments are used to observe the two-step martensitic transformation and to establish an orientation relationship between the B19 orthorhombic and the B19′ monoclinic structures. Strain vs temperature Ms tests establish the relative shape changes associated with both the cubic-to-orthorhombic transformation and the orthorhombic-to-monoclinic transformation. Similar Ms tests, where an applied load is removed during the transformation, establishes a crystallographic dependence between the two shape changes. Whereas binary TiNi is “trained” to undergo a specific shape change, this ternary TiNiCu alloy has a “natural” direction associated with the second step of its shape change.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W.J. Moberly and K.N. Melton, in Engineering Aspects of Shape Memory Alloys. (ed. by T.W. Duerig and C.M. Wayman), Butterworths, London (1990).

  2. W.J. Moberly, PhD Thesis: “Mechanical Twinning and Twinless Martensite in Ternary TiNi Alloys”, Stanford University, (1991).

    Google Scholar 

  3. O. Mercier, K.N. Melton, R. Gotthardt and A. Kulik, Proc. Int. Conf. on Solid-Solid Phase Transformations, (ed. H.L. Aaronson, D.L. Laughlin, R.F. Sekeika, and C.M. Wayman, p1259–63 (1982).

  4. O. Mercier, & K.N. Melton, Met Trans., V10A, p387–389 (1979).

    Article  Google Scholar 

  5. R.H. Bricknell, K.N. Melton and O. Mercier, Met Trans. V10A, p693–697 (1979).

    Article  Google Scholar 

  6. T. Tadaki and C.M. Wayman, Metallography, V15, p233–258 (1982).

    Article  Google Scholar 

  7. V. Y. Yerofeyev, L.A. Monasevich, V.A. Pavskaya and Y.I. Paskal, Phys. Metals V4 (1), p86–92 (1982).

    Google Scholar 

  8. W.J. Moberly, J.L. Proft, T.W. Duerig & R. Sinclair, ICOMAT 89, (ed. by B.C. Muddle) Trans. Tech. Publications Ltd., p605–611 (1990).

  9. S.P. Alisova, N.V. Volynskaya, P.B. Budberg & A.N. Kobylkin, Izvestiya Akademii Nauk. SSSR. Metally, V5, p210–212 (1986).

    Google Scholar 

  10. G.M. Michal & R. Sinclair, Acta Cryst., V37B, p1803–1807 (1981).

    Article  Google Scholar 

  11. S.P. Gupta and A.A. Johnson, Trans. JIM, V14, p292 (1973).

    Article  Google Scholar 

  12. K.M. Knowles, and D.A. Smith, Acta Metall., V29, p101 (1981).

    Article  Google Scholar 

  13. R. Sinclair, AlP Conf. Proc., V53, p269 (1979).

    Article  Google Scholar 

  14. G.M. Michal, PhD Thesis: “Diffusionless Transformations in TiNi”,Stanford University (1979).

    Google Scholar 

  15. G.B. Olson & M. Cohen, Met. Trans., V7A, p1897–1923 (1976).

    Google Scholar 

  16. Otsuka, K & K. Shimizu, “Stress-Induce Martensitic Transformations and Martensite-to-Martensite Transformations.” Proc. Int. Conf. on Solid-Solid Phase Transformations, (H.L. Aaronson, D.L. Laughlin, R.F. Sekeika & C.M. Wayman, eds.), Pittsburg, p.1267–1286 (1982).

    Google Scholar 

  17. W.J. Moberly, T.W. Duerig & R. Sinclair, to be published in Scripta Met.

  18. W.J. Moberly & R. Sinclair, to be published.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moberly, W.J., Duerig, T., Proft, J. et al. Two - Step Martensitic Transformations in TiNi(10% Cu) Shape Memory Alloys. MRS Online Proceedings Library 246, 55–60 (1991). https://doi.org/10.1557/PROC-246-55

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/PROC-246-55

Navigation