Skip to main content
Log in

High-Purity Germanium Crystal Growing

  • Published:
MRS Online Proceedings Library Aims and scope

Abstract

The germanium crystals used for the fabrication of nuclear radiation detectors are required to have a purity and crystalline perfection which is unsurpassed by any other solid material. These crystals should not have a net electrically active impurity concentration greater than 10l0 cm−3 and be essentially free of charge trapping defects.

Such perfect crystals of germanium can be grown only because of the highly favorable chemical and physical properties of this element. However, ten years of laboratory scale and commercial experience has still not made the production of such crystals routine. The origin and control of many impurities and electrically active defect complexes is now fairly well understood but regular production is often interrupted for long periods due to the difficulty of achieving the required high purity or to charge trapping in detectors made from crystals seemingly grown under the required conditions.

The compromises involved in the selection of zone refining and crystal grower parts and ambients is discussed and the difficulty in controlling the purity of key elements in the process is emphasized. The consequences of growing in a hydrogen ambient are discussed in detail and it is shown how complexes of neutral defects produce electrically active centers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. E. Haller and F. S. Goulding in: Handbook on Semiconductors, C. Hilsum ed. (North-Holland 1980) Vol. 4, Ch. 6C.

  2. E. M. Pell, J. Appl. Phys. 31, 291 (1960).

    Article  CAS  Google Scholar 

  3. R. N. Hall in: Semiconductor Materials for γ-Ray Detectors—Proceedings of the Meeting, W. L. Brown (BTL) and S. Wagner (BNL) eds. (1966) p. 27.

  4. G. S. Hubbard, E. E. Haller and W. L. Hansen, IEEE Trans. Nucl. Sci. NS-25, No. 1, 362 (1978).

    Article  Google Scholar 

  5. R. N. Hall and T. J. Soltys, IEEE Trans. Nucl. Sci. NS-18, No. 1, 160 (1971).

    Article  Google Scholar 

  6. W. L. Hansen, Nucl. Instr. and Methods 94, 377 (1971).

    Article  CAS  Google Scholar 

  7. J. Czochralski, Z. Phys. Chem. 92 219 (1918).

    Google Scholar 

  8. C. Kittel, Introduction to Solid State Physics (John Wiley 1968) 3rd ed. p. 561.

  9. A. G. Tweet, J. Appl. Phys. 30, 2002 (1959).

    Article  CAS  Google Scholar 

  10. H. Föll and B. O. Kolbesen, J. Appl. Phys. 8, 319 (1975).

    Article  Google Scholar 

  11. R. N. Hall and T. J. Soltys, IEEE Trans. Nucl. Sci. NS-18, No. 1, 160 (1971).

    Article  Google Scholar 

  12. E. E. Haller, G. S. Hubbard, W. L. Hansen and A. Seeger, Inst. Phys. Conf. Ser. No. 31, 309 (1977).

    Google Scholar 

  13. P. Glasow and E. E. Haller, IEEE Trans. Nucl. Sci. NS-23, No. 1, 92 (1976).

    Article  Google Scholar 

  14. G. Ziegler, Z. Naturforsch. 169, 219 (1961).

    Article  Google Scholar 

  15. T. F. Ciszek in: Semiconductor Silicon, E. L. Kern and R. R. Haberecht eds. (The Electrochemical Soc. 1969) p. 156.

  16. G. S. Hubbard, E. E. Haller and W. L. Hansen, IEEE Trans. Nucl. Sci. NS-26, No. 1, 303 (1979).

    Article  Google Scholar 

  17. E. E. Haller, W. L. Hansen and F. S. Goulding, Adv. in Physics 30, No. 1, 93 (1981) and references therein.

    Article  CAS  Google Scholar 

  18. W. L. Hansen and E. E. Haller, IEEE Trans. Nucl. Sci. NS-19, No. 1, 260 (1972).

    Article  Google Scholar 

  19. W. D. Edwards, J. Appl. Phys. 39 1784 (1968); ibid. 39 2457 (1963).

    Article  CAS  Google Scholar 

  20. W. L. Hansen, E. E. Haller and P. N. Luke, IEEE Trans. Nucl. Sci. NS-29, No. 1, 738 (1982).

    Article  Google Scholar 

  21. A. J. Tavendale, Australian Atomic Energy Comm., private communication.

  22. R. J. Fox, IEEE Trans. Nucl. Sci. NS-13, No. 3, 367 (1966).

    Article  Google Scholar 

  23. E. E. Haller, W. L. Hansen, P. N. Luke, R. McMurray and B. Jarrett, IEEE Trans. Nucl. Sci. NS-29, No. 1, 745 (1982).

    Article  Google Scholar 

  24. E. E. Haller, B. Joós and L. M. Falicov, Phys. Rev. B 21, 4729 (1980).

    Article  CAS  Google Scholar 

  25. R. N. Hall, IEEE Trans. Nucl. Sci. NS-19, No. 3, 266 (1972).

    Article  Google Scholar 

  26. E. E. Haller, Inst. Phys. Conf. Ser. No. 46, 205 (1979).

    Google Scholar 

  27. R. N. Hall, IEEE Trans. Nucl. Sci. NS-21, No. 1, 260 (1974).

    Article  Google Scholar 

  28. L. S. Darken, IEEE Trans. Nucl. Sci. NS-26, No. 1, 324 (1979).

    Article  Google Scholar 

  29. L. S. Darken, J. Electrochem. Soc. 126, 827 (1979).

    Article  CAS  Google Scholar 

  30. E. H. Nicollian and J. R. Brews, MOS Physics and Technology (John Wiley 1982) p. 764.

  31. J. H. Crawford and L. M. Slifkin, Point Defects in Solids, Vol. 1 (Plenum Press 1972).

  32. E. E. Haller, W. L. Hansen, G. S. Hubbard and F. S. Goulding, IEEE Trans. Nucl. Sci. NS-23, No. 1, 81 (1976).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hansen, W.L., Haller, E. High-Purity Germanium Crystal Growing. MRS Online Proceedings Library 16, 1–16 (1982). https://doi.org/10.1557/PROC-16-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/PROC-16-1

Navigation