Skip to main content
Log in

Kinetic Limits to Growth on GaAs by OMCVD

  • Article
  • Published:
MRS Online Proceedings Library Aims and scope

Abstract

Using a real-time surface probe with 0.01 monolayer (ML) sensitivity, we determine the rate-limiting steps for atmospheric-pressure, alternating-layer-epitaxy OMCVD growth on (001) and (110) GaAs with trimethylgallium and arsine sources. The reaction of TMG with AsH3-saturated (001) GaAs is limited by a competition between decomposition (at 39 kcal/mole) and desorption of TMG chemisorbed (at −26 kcal/mole) via an excluded-volume mechanism. The reaction of AsH3with TMG-saturated (001) GaAs shows an initial fast transient followed by a slower recovery. On (110) GaAs, TMG reacts essentially instantaneously with an AsH3-saturated surface while the reaction of AsH3 with a TMG-saturated surface is relatively slow. In the latter case temperature and pressure dependences indicate a fast AsH3-surface reaction that is blocked by an adsorbed species that must be desorbed before the AsH3-surface reaction can take place.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. G. Jacko and S. J. W. Price, Can. J. Chem. 41, 1560 (1963).

    Article  CAS  Google Scholar 

  2. S. P. DenBaars, B. Y. Maa, P. D. Dapkus, A. D. Danner, and H. C. Lee, J. Crystal Growth 77, 188 (1986).

    Article  Google Scholar 

  3. J. Ε. Butler, Ν. Bottka, R. S. Sillmon, and D. Κ Gaskill, J. Crystal Growth 77, 163 (1987).

    Article  Google Scholar 

  4. P. W. Lee, T. R. Olmstead, D. R. McKenna, and K. F. Jensen, J. Crystal Growth 85, 165 (1987).

    Article  CAS  Google Scholar 

  5. C. A. Larsen, N. I. Buchan, and G. B. Stringfellow, Appl. Phys. Lett. 52, 480 (1988).

    Article  CAS  Google Scholar 

  6. H. Suzuki, K. Mori, M. Kawasaki, and H. Sato, J. Appl. Phys. 64, 371 (1988).

    Article  CAS  Google Scholar 

  7. R. Liickerath, P. Tommack, A. Herding, H. J. Koss, P. Balk, K F. Jensen, and W. Richter, J. Crystal Growth 93, 151 (1988).

    Article  Google Scholar 

  8. P. D. Dapkus, H. M. Manasevit, K. L. Hess, T. S. Low, and G. E. Stillman, J. Crystal Growth 55, 10 (1981).

    Article  CAS  Google Scholar 

  9. T. F. Kuech, E. Veuhoff, T. S. Kuan, V. Deline, and R. Potemski, J. Crystal Growth 77, 257 (1986).

    Article  CAS  Google Scholar 

  10. W. H. Petzke, V. Gottschalch, and E. Butter, Krist. Tech. 9, 763 (1974).

    Article  CAS  Google Scholar 

  11. D. H. Reep and S. Κ Ghandhi, J. Electrochem. Soc. 130, 675 (1983).

    Article  CAS  Google Scholar 

  12. J. Nishizawa, T. Kurabayashi, H. Abe, and N. Sakurai, J. Electrochem. Soc. 134, 945 (1987).

    Article  CAS  Google Scholar 

  13. J. Nishizawa, T. Kurabayashi, H. Abe, and N. Sakurai, J. Vac. Sci. Technol. A5, 1572 (1987).

    Article  Google Scholar 

  14. S. P. DenBaars, C. A. Beyler, A. Hariz, and P. D. Dapkus, Appl. Phys. Lett. 51, 1530 (1987).

    Article  CAS  Google Scholar 

  15. P. Balk, M. Fischer, D. Grundmann, R. Liickerath, H. Liith, and W. Richter, J. Vac. Sci. Technol. B5, 1453 (1987).

    Article  Google Scholar 

  16. A. Doi, S. Iwai, T. Meguro, and S. Namba, J. Appl. Phys. Jpn. 27, 795 (1988).

    Article  CAS  Google Scholar 

  17. D. E. Aspnes and A. A. Studna, Phys. Rev. Lett. 54, 1956 (1985).

    Article  CAS  Google Scholar 

  18. D. E. Aspnes, J. P. Harbison, A. A. Studna, and L. T. Florez, Phys. Rev. Lett. 59, 1687 (1987).

    Article  CAS  Google Scholar 

  19. D. E. Aspnes, J. P. Harbison, A. A. Studna, and L. T. Florez, J. Vac. Sci. Technol. A6, 1327 (1988).

    Article  Google Scholar 

  20. E. Colas, D. E. Aspnes, R. Bhat, A. A. Studna, M. A. Koza, and V. G. Keramidas, J. Crystal Growth 93, 931 (1988); 94, 613 (1989).

    Article  Google Scholar 

  21. D. E. Aspnes, E. Colas, A. A. Studna, R. Bhat, M. A. Koza, and V. G. Keramidas, Phys. Rev. Lett. 61, 2782 (1988).

    Article  CAS  Google Scholar 

  22. D. E. Aspnes, R. Bhat, E. Colas, V. G. Keramidas, M. A. Koza, and A. A. Studna, J. Vac. Sci. Technol. A7, 711 (1989).

    Article  Google Scholar 

  23. R. Bhat, M. A. Koza, C. C. Chang, S. A. Schwartz, and T. D. Harris, J. Crystal Growth 77, 7 (1986).

    Article  CAS  Google Scholar 

  24. D. E. Aspnes, A. A. Studna, L. T. Florez, Y. C. Chang, J. P. Harbison, Μ. K. Kelly, and H. H. Farrell, J. Vac. Sci. Technol. (in press).

  25. M. Suzuki and M. Sato, J. Electrochem. Soc. 132, 1684 (1984).

    Article  Google Scholar 

  26. D. E. Aspnes, J. P. Harbison, A. A. Studna, Y. C. Chang, L. T. Florez, and Η. Η. Farrell (unpublished).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aspnes, D.E., Bhat, R., Colas, E. et al. Kinetic Limits to Growth on GaAs by OMCVD. MRS Online Proceedings Library 145, 99–106 (1989). https://doi.org/10.1557/PROC-145-99

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/PROC-145-99

Navigation