Skip to main content
Log in

Synthesis of Ladder Polymers Via Soluble Precursor Polymers

  • Published:
MRS Online Proceedings Library Aims and scope

Abstract

Although ladder polymers have been known for some time, poor solubility and low molecular weights have prevented processing and have discouraged consideration of these materials for structural and electronic applications. Poor solubility can be associated with strong Van der Waals interactions between delocalized π-electron clouds on adjacent chains. The optimum orbital overlap along the polymer backbone existent for ladder polymers has motivated reexamination of these systems for electronic applications. We have pursued alternatives to the tradiational acid-catalyzed polycondensation of underivatized monomers at elevated temperatures by reacting derivatized (e.g., with alkyl or vinylamine substituents) monomers at reduced temperature in organic solvents (e.g., DMF) to produce open-chain precursors to ladder polymers. These are converted to fully-fused ladder polymers by thermal processing either in solution or as solid state (e.g., thin film) materials. The preparation of precursors of improved solubility greatly enhances processing options and has permitted the utilization of both Langmuir-Blodgett methods and the perparation of optical quality films by casting (including spin casting). By control of thermal processing conditions, both derivatized and underivatized ladder polymers have been prepared. Our approach offers obvious advantages for the investigation of the effect of conformation and of substituents upon electronic properties. The preparation of copolymers with rigid rod and flexible chain segments incorporated in the polymer backbone has also been investigated. For such materials, polymers with fully fused ladder segments can exhibit improved solubility in DMF relative to polymers with open chain segments due to the absence of favorable hydrogen bonding stuctures in the former. Finally, we are investigating the effect of electrochemical polymerization of Langmuir-Blodgett films prepared with derivatized diaminobenzene. Such an approach clearly takes advantage of improved solubility of the derivatized monomer and improved molecular order which can be realized with the Langmuir-Blodgett method. Free radical polymerization may facilitate the realization of improved molecular weight distributions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. J. Williams, Nonlinear Optical Properties of Organic and Polymeric Materials (American Chemical Society, Washington, D.C., 1983).

  2. Y. R. Shen, The Principles of Nonlinear Optics, (Academic Press, New York, 1984).

    Google Scholar 

  3. C. Flytzanis and J. L. Oudar, Nonlinear Optics: Materials and Devices, (Springer, New York, 1986).

    Book  Google Scholar 

  4. Molecular and Polymeric Optoelectronic Materials: Fundamentals and Applications, (SPIE Proceedings, 682, 1986).

  5. Advances in Nonlinear Polymers and Inorganic Crystals, Liquid Crystals and Laser Media, (SPIE Proceedings, 824, 1987).

  6. D. H. Auston, et. al., “Research on Nonlinear Optics: An Assessment,” Appl. Optics 26, 211 (1987).

    Article  CAS  Google Scholar 

  7. D. S. Chemla and J. Zyss, Nonlinear Optical Properties of Organic Molecules and Crystals, Vols. 1 and 2 (Academic Press, New York, 1987).

  8. P. N. Prasad and D. R. Ulrich, Nonlinear Optical and Electroactive Polymers, (Plenum Press, New York, 1988).

    Book  Google Scholar 

  9. A. J. Heeger, J. Orenstein, and D. R. Ulrich, Nonlinear Optical Properties of Polymers, (Material Research Society, Pittsburgh, 1988).

    Google Scholar 

  10. J. Messier, F. Kajzar, P. N. Prasad, and D. R. Ulrich, Nonlinear Optical Effects in Organic Polymers, (NATO ASI Series No. 971, 1988).

  11. J. K. Stille and E. Mainen, Polym. Lett. 4, 39 (1966).

    Article  CAS  Google Scholar 

  12. J. K. Stille and E. Mainen, Macromolecules 1, 36 (1968).

    Article  CAS  Google Scholar 

  13. J. K. Stille and M. E. Freeburger, Polym. Sci. A-1, 6, 161 (1968).

    Article  CAS  Google Scholar 

  14. R. L. Van Deusen, Polym. Lett. 4, 211 (1966).

    Article  Google Scholar 

  15. F. E. Arnold and R. L. VanDeusen, Macromolecules 2, 497 (1969).

    Article  CAS  Google Scholar 

  16. F. E. Arnold and R. L. VanDeusen, J. Appl. Polym. Sci. 15, 1035 (1971).

    Article  Google Scholar 

  17. T. Skotheim, Electroresponsive Molecular and Polymeric Systems, (Marcel Dekker,New York, 1989).

  18. A. O. Patil, Y. Shenoue, F. Wudl, and A. J. Heeger, J. Amer. Chem. Soc. 109, 1858 (1987).

    Article  CAS  Google Scholar 

  19. R. L. Elsenbaumer, K. Y. Jen, G. G. Miller, and L. W. Shacklette, Syn. Met. 18, 277 (1987).

    Article  CAS  Google Scholar 

  20. M. Sato, S. Tanaka, and K. Kaeriyama, Syn. Met. 18, 229 (1987).

    Article  CAS  Google Scholar 

  21. D. R. Gagnoon, J. D. Capistran, F. E. Karasz, R. W. Lenz, S. Antoun: Polymer 28, 567 (1987).

    Google Scholar 

  22. D. Buckley, J. B. Henbest, and P. J. Slade, J. Chem. Soc. 4891 (1987).

  23. R. Nietzki and A. Schedler, Ber. 30, 1666 (1987).

    Article  Google Scholar 

  24. H. A. Vogel and C. S. Marvel, J. Polym. Sci. 50, 511 (1961).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dalton, L.R., Yu, L. Synthesis of Ladder Polymers Via Soluble Precursor Polymers. MRS Online Proceedings Library 134, 107–115 (1988). https://doi.org/10.1557/PROC-134-107

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/PROC-134-107

Navigation