Skip to main content
Log in

Synthesis of High Quality Few Layer Graphene Sheets in Large Quantities by Radio Frequency Chemical Vapor Deposition

  • Published:
MRS Online Proceedings Library Aims and scope

Abstract

This work reports a low-cost method for large scale production of high quality graphene via radio-frequency chemical vapor deposition. High quantities of graphene were successfully synthesized on the Fe-Co/MgO (2.5:2.5:95 wt.%) catalytic system utilizing acetylene as a hydrocarbon source at 1000 °C. The as-produced graphene sheets were purified in a single step by washing with a diluted hydrochloric acid solution under sonication. Next, they were thoroughly characterized by microscopy, spectroscopy, and X-Ray diffraction. Advanced transmission electron microscopy and atomic force microscopy analyses have indicated the formation of 3-5 layered graphene nanosheets. Thorough analyses by Raman spectroscopy were also performed demonstrating the presence of high quality and few-layer graphene samples. This low cost and highly reproducible method may be applied in a straightforward way to produce large quantities of graphene for various advanced applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Stankovich, D. A. Dikin, G. H. B. Dommett, K. M. Kohlhass, Z. J. Zimney, E. A. Stach, R. D. Piner, S. T. Nguyen, and R. S. Rouff, Nature 442, 282 (2006).

    Article  CAS  Google Scholar 

  2. A. K. Geim, and A. H. MacDonald, Phys. Today 60, 35 (2007).

    CAS  Google Scholar 

  3. K. S. Novoselov, Z. Jiang, Y. Zhang, S. V. Morozov, H. L. Stormer, U. Zeitler, J. C. Maan, G. S. Boebinger, P. Kim, and A. K. Geim, Science 315, 1379 (2007).

    Article  CAS  Google Scholar 

  4. X. Wang, Z. Linjie, and K. Mullen, Nano Lett. 8, 323 (2008).

    Article  CAS  Google Scholar 

  5. C. Berger, Z. M. Song, X. B. Li, X. S. Wu, N. Brown, C. Nand, D. Mayon, T. B. Li, J. Hass, A. N. Marchenkov, E. H. Conrad, P. N. First, and W. A. de Heer, Science 312, 1191 (2006).

    Article  CAS  Google Scholar 

  6. A. K. Geim, and K. S. Novoselov, Nat. Mat. 6, 183 (2007).

    Article  CAS  Google Scholar 

  7. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, Nature 438, 197 (2005).

    Article  CAS  Google Scholar 

  8. W. S. Hummers, and J. R. E. Offeman, J. Am Chem. Soc. 80, 1339 (1958).

    Article  CAS  Google Scholar 

  9. R. Hao, W. Qian, L. Zhang, and Y. Hou, Chem. Comm. 48, 6576 (2008).

    Article  Google Scholar 

  10. X. Li, X. Wang, L. Zhang, S. Lee, and H. Dai, Science 319, 1229 (2008).

    Article  CAS  Google Scholar 

  11. G. Wang, J. Yang, Park, J.; Gou, X.; Wang, B.; Liu, H.; Yao, J. J. Phys. Chem. 112, 8192 (2008).

    CAS  Google Scholar 

  12. P. W. Sutter, J. I. Flege, E. A. Sutter, Nat. Mat. 7, 406 (2008).

    Article  CAS  Google Scholar 

  13. S. Stancovich, D. A. Dikin, R. D. Piner, K. A. Kohlhass, A. Kleinhammes, Y. Jia, Y. Wu, S. T. Nguyen, Rouff, R. S. Carbon 45, 1558 (2007).

    Article  Google Scholar 

  14. E. Dervishi, Z. Li, A. R. Biris, D. Lupu, S. Trigwell, A. S. Biris, Chem. Mater. 19, 179 (2007).

    Article  CAS  Google Scholar 

  15. A. R. Biris, A. S. Biris, D. Lupu, S. Trigwell, E. Dervishi, Z. Rahman, P. Marginean, Chem. Phys. Lett. 429, 204 (2006).

    Article  CAS  Google Scholar 

  16. E. Dervishi, Z. Li, Y. Xu, V. Saini, F. Watanabe, A. S. Biris, A. Bonpain, J. J. Garbay, A. Meriet, M. Richard, Part. Science and Tech. 27, 222 (2008).

    Article  Google Scholar 

  17. L. Ci, L. Song, D. Jariwala, A. Laura Elías, W. Gao, M. Terrones, P. M. Ajayan, Adv. Mater. 21, 1 (2009).

    Article  Google Scholar 

  18. C. Vericat, M. E. Vela, and R. C. Salvarezza, Phys. Chem. Chem. Phys. 7 (18), 3258–3268 (2005).

    Article  CAS  Google Scholar 

  19. A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, Phys. Rev. Lett., 97, 189401 (2007).

    Google Scholar 

  20. D. Graf, F. Molitor, K. Ensslin, C. Stampfer, A. Jungen, C. Hierold, L. Wirtz, Nano Lett. 7, 238–242 (2007).

    Article  CAS  Google Scholar 

  21. A. C. Ferrari, Solid State Communications 143, 47–57 (2007).

    Article  CAS  Google Scholar 

  22. A. Das, B. Chakraborty, and A. K. Sood, Bull. Mater. Sci. 31 (3), 579–584 (2008).

    Article  CAS  Google Scholar 

  23. D. Graf, F. Molitor, K. Ensslin, C. Stampfer, A. Jungen, C. Hierold and L. Wirtz, Solid State Comm. 143, 44–46 (2007).

    Article  CAS  Google Scholar 

  24. A. Reina, X. Jia, J. Ho, D. Nezich, H. Son, V. Bulovic, M. S. Dresselhaus, and J. Kong, Nano Letter 9 (1), 30–35 (2009).

    Article  CAS  Google Scholar 

  25. D. S. Lee, C. Riedl, B. Krauss, K. von Klitzing, U. Starke, and J. H. Smet, Nano Lett. 8 (12), 4320–4325 (2008).

    Article  CAS  Google Scholar 

  26. S. Dimovski, A. Nikitin, H. Ye, and Y. Gogotsi, J. Mat. Chem. 14, 238–243 (2004).

    Article  CAS  Google Scholar 

  27. J. Biscoe, and B. Warren, J. Appl. Phys. 12, 346 (1942).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dervishi, E., Li, Z., Watanabe, F. et al. Synthesis of High Quality Few Layer Graphene Sheets in Large Quantities by Radio Frequency Chemical Vapor Deposition. MRS Online Proceedings Library 1204, 536 (2009). https://doi.org/10.1557/PROC-1204-K05-36

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1557/PROC-1204-K05-36

Navigation